SPARK Ada mode for GNU/Emacs

Gaétan Allaert
July 10, 2011

Contents

1 Introduction 1

2 Installation 1

3 Configuration 2

4 Functionalities 2
4.1 Indentation e e e e e e e e e 3
4.2 Reformatting L 3
4.3 SPARK/Proof 4
4.4 SPARK Fix Error e 4
4.5 SPARK Pretty Print 5

5 Licence 5

1 Introduction

This is a major mode to edit SPARK Ada source code in Emacs. This mode is based on the Ada
mode already provided with Emacs.

SPARK is a formally-defined computer programming language based on the Ada programming
language, intended to be secure and to support the development of high integrity software used
in applications and systems where predictable and highly reliable operation is essential either for
reasons of safety (e.g., avionics in aircraft/spacecraft, or medical systems and process control soft-
ware in nuclear powerplants) or for business integrity (for example financial software for banking
and insurance companies).

2 Installation

The SPARK Ada mode is not a stand alone mode, it requires the Ada mode.

ADA MODE_VERSION=4.01
SPARK MODE_VERSION=1.1

e Get version <ADA_MODE_VERSION> of the Ada mode from http://stephe-leake.org/emacs/ada-
mode/emacs-ada-mode.html. Check the version of the Ada mode provided with your Emacs,
it could be the relevant one!

e Install the Ada mode if needed :

mkdir <PREFIX>/ada—mode/

cd <PREFIX>/ada—mode/

tar zxvf ada—mode—${ADA MODE VERSION}. tar .gz

cd —

e Unpack the SPARK Ada mode :

tar zxvf spark—ada—${SPARK MODE.VERSION}. tar.gz

The directory spark-ada-<SPARK_MODE_VERSION> will be created.

e Overwrite the Ada mode by the SPARK Ada mode :
cp —f <PREFIX>/spark—ada—${SPARK MODE_VERSION} /x. el <PREFIX>/ada—mode/

e Make the SPARK Ada mode visible for Emacs by adding in your .emacs :
(add—to—1list ’load—path ”<PREFIX>/ada—mode”)

e By default the SPARK Ada mode is not activated. To activate the SPARK Ada mode, use
the Ada — Customize menu from the Ada mode and update the entry : ” Ada Spark Mode”.
This will update your .emacs by adding :

(custom—set—variables
’(ada—spark—mode t)
)

e When opening an Ada file in Emacs, the SPARK Ada mode will be used.

e The specific SPARK Ada mode functionalities are described in the usage section of spark-mode. el.

3 Configuration

The SPARK mode provides the following configuration parameters:

ada—fill—spark—annotation # Text inserted in the first columns when filling
a SPARK annotation paragraph.
ada—spark—examiner—command spark Name of the SPARK Examiner and the op-

tions to use.

ada—spark—sparksimp—command

sparksimp -t

Name of the SPARKSimp and the options to
use. Don’t provide the -p= option.

ada—spark—simplifier—command spadesimp Name of the Simplifier and the options to use.
ada—spark—pogs—command pogs Name of the POGS and the options to use.
ada—spark—mode nil Set SPARK Ada mode.
ada—spark—number—of—jobs 2 Specifies the number of jobs (commands) to

run simultaneously.

4 Functionalities

The SPARK mode provides the following functionalities:

TAB indent SPARK annotations

ENTER add the SPARK annotation --# when you insert
a newline inside the SPARK annotations +
indent the new line

TYPE adjust casing for identifier in SPARK annotations

ESC-/ or META-/ auto-completion in SPARK annotation

C-c C-f reformat proof functions

C-c C-i reformat/sort inherit annotations

C-c C-g reformat/sort own/global annotations

C-c C-h reformat/compress/sort derives annotation

Ada — SPARK — SPARK current file
(spark—current—file)

SPARK the current file

Ada — SPARK — SPARK metafile
(spark—metafile)

SPARK the metafile

Ada — SPARK — SPARK/Proof current body

(spark—proof—current—body)

SPARK and Simplify the current body (without
the nested subprograms) +
open the related SIV file

Ada — SPARK — SPARK/Proof current subprogram

(spark—proof—current—subprogram)

SPARK, Simplify and POGS the current subpro-
gram (with the nested subprograms) +

open the related SIV file and SUM file if nested
subprograms

Ada — SPARK — SPARK/Proof current file
(spark—proof—current—file)

SPARK, Simplify and POGS the current file 4
open the top level SUM file

Ada — SPARK — SPARK/Proof metafile
(spark—proof—metafile)

SPARK, Simplify and POGS the metafile +
open the top level SUM file

Ada — SPARK — Proof all
(spark—proof)

Simplify all and POGS +
open the top level SUM file

(spark—fix—error)

automatic fix of SPARK semantic, flow and cap-
italisation errors

C-c C-d

Goto Declaration/Body
SPARK annotations

cross navigation in

(ada—find—any—references)

List References cross navigation in SPARK an-
notations using gnatfind or gps

AUTO

syntax highlighting of SPARK keywords in anno-
tation

(ada—rename—identifier)

renames identifier in Ada source code and in
SPARK annotations

(spark—pretty—print)

pretty print the SPARK source code

(ada—format—call—paramlist)

reformat subprogram call or aggregate

4.1 Indentation

To indent a line in a SPARK annotation, the cursor must be located after the ——#. If the cursor is
located before the ——#, only the ——# will be indented as a normal Ada comment. The corresponding

SPARK annotation on the same line will not be indented.

4.2 Reformatting

All the SPARK reformatting functionalities are performed in the standard way of the Emacs Ada
mode like C-c C-f to reformat subprograms parameters list : put the cursor in the area that has
to be reformatted and run the relevant reformatting command.

e Put the cursor in the parameters list of a proof function and type C-c C-f.

Put the cursor in a inherit annotation and type C-c C-i.

Put the cursor in a own annotation and type C-c C-g.
e Put the cursor in a global annotation and type C-c C-g.

e Put the cursor in a derives annotation and type C-c C-h.

The SPARK reformatting functionalities don’t use sparkformat. So, sparkformat has not to
be present or visible.

4.3 SPARK/Proof

e SPARK/Proof current body : The cursor must be located in the body of a SPARK source
code. SPARK the current file; simplify the VCG file for the selected body; open the SIV file
for this specific body.

e SPARK/Proof current subprogram : The cursor must be located in the body of a SPARK
source code. SPARK the current file; simplify the VCG file for the selected body; if they
are nested subprograms, simplify all the subprograms recursively and run POGS on all the
nested subprograms; open the SIV file for this specific body and open the SUM file for the
nested subprograms.

e SPARK/Proof current file : SPARK the current file; simplify everything from the top level
and run POGS from the top level; open the top level SUM file.

e SPARK/Proof metafile : SPARK the given metafile; simplify everything from the top level
and run POGS from the top level; open the top level SUM file.

The Ada SPARK mode uses the ada—fill—spark—annotation configuration parameter to SPARK
a file or a metafile.

The Ada SPARK mode uses the ada—spark—sparksimp—command and ada—spark—number—of—jobs
configuration parameters to simplify a set of subprograms recursively. The last one (ada—spark—number—of—jobs)
is used to specify the number of simplifiers to run simultaneously.

The Ada SPARK mode uses the ada—spark—simplifier—command configuration parameter to
simplify a specific VCG file.

The Ada SPARK mode uses the ada—spark—pogs—command configuration parameter to run
POGS.

4.4 SPARK Fix Error

SPARK Fix Error works in a similar way than GNAT Fix Error but for SPARK annotations. To
fix normal Ada errors in the SPARK source code, it is better to use GNAT Fix Error and not
SPARK Fix Error. The goal of SPARK Fix Error is not to duplicate GNAT Fix Error but to
fix specific SPARK errors. For this reason, SPARK Fix Error should be use in combination with
GNAT Fix Error.

Before fixing any SPARK errors, make sure that SPARK Fix Error is available for Emacs. The
.emacs must contain the following line: (require ’spark—fix—error).

To fix a SPARK error:

1. Run the Examiner on the SPARK source code using Ada — SPARK — SPARK current file
or Ada — SPARK — SPARK metafile.

2. Select the SPARK error that has to be fixed.

3. The related SPARK source code will be loaded and the cursor will be located at the corre-
sponding line/column number.

4. Most of the time, the cursor is not located where the SPARK error must be fixed. For
example, the cursor can be located at the end of the subprogram body and the SPARK
error must be fixed in the annotation of the subprogram declaration. The cursor has to
be moved manually to the relevant location in the SPARK annotation. The cursor may be
placed in the global or the derives annotation.

5. Call the function (spark—fix—error) by typing M-x spark-fix-error.

6. SPARK Fix Error will try to fix as many error as it can. SPARK Fix Error will stop when
the next error is located in a different file or at a different location in the same file or if the
next error is related with a different category of SPARK errors. The following categories are
defined:

e Semantic error;
e Flow error;

e Stop after the error for isolated SPARK error.

The list of SPARK errors that can be fixed automatically is defined in the file spark-fix-error.el
in the function (spark—fix—one—error).

4.5 SPARK Pretty Print

SPARK Pretty Print reformats the Ada source code and the SPARK annotations as well. To get
better result, SPARK Pretty Print can be run after gnatpp -c5. The -c5 option must be used
to left the SPARK annotations untouched.

To run SPARK Pretty Print in batch mode,

e an Emacs lisp script has to be written to call (spark—pretty—print) in the good context.
Lets call this script spark-pretty-print.el and the content of the file is as follow:

(defun spark—pretty—print—batch ()
(add—to—list ’load—path ”<PREFIX>/ada—mode/”)
(custom—set—variables

’(ada—spark—mode t))

load —file ”"<PREFIX>/ada—mode/ada—mode. el”)

ada—mode)

spark—pretty—print)

save—buffers—kill—emacs t))

(
(
(
(

e then, the following command can be issued:

emacs —batch —load spark—pretty—print.el —find—file ${SPARKFILE} \
—funcall spark—pretty—print—batch

5 Licence

Copyright (C) 2010, 2011 Gaétan Allaert

Author: Gaétan Allaert <gaetan.allaert@belgacom.net>
Maintainer: Gaétan Allaert <gaetan.allaert@belgacom.net>
Keywords: languages SPARK ada

This file is not part of GNU Emacs.

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

