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Abstract

This is the proof document of the IsarMathLib project version 1.9.6.
IsarMathLib is a library of formalized mathematics for Isabelle2017
(ZF logic).

Contents

1 Introduction to the IsarMathLib project
1.1 How to read IsarMathLib proofs - a tutorial . . . . . . . . ..
1.2 Overview of the project . . . . .. .. ... ... ... ....

2 First Order Logic
2.1 Notions and lemmasin FOL . . . . . .. ... ... ......

3 ZF set theory basics
3.1 Lemmas in Zermelo-Fraenkel set theory . . .. .. .. .. ..

4 Natural numbers in IsarMathLib
4.1 Induction . . . . . . . . . .o
4.2 Intervals . . . . . . . .

5 Order relations - introduction
5.1 Definitions . . . . . . . . . ...
52 Intervals . . . . . . . . . . ..o
53 Boundedsets . . . .. . ... ... ...

6 More on order relations
6.1 Definitions and basic properties . . . . . . . .. .. ... ..
6.2 Properties of (strict) total orders . . . . ... ... ... ...

7 Even more on order relations
7.1 Maximum and minimum of aset . . .. ... ... ... ...
7.2 Supremum and Infimum . . . . ... ... 0oL
7.3 Strict versions of order relations . . . . ... ... ... ...

15
15

18
18

23
24
29

30
30
33
35

41
42
44



8 Order on natural numbers
8.1 Order on natural numbers . . . . . . ... ... ...

9 Functions - introduction

9.1 Properties of functions, function spaces and (inverse) images.

9.2 Functions restricted toaset . . . . . ... ... ...
9.3 Constant functions . . . . .. ... ... ... ....
9.4 Injections, surjections, bijections etc. . . . . . . . ..
9.5 Functions of two variables . . . . . .. .. ... ...

10 Binary operations
10.1 Lifting operations to a function space . . ... ...
10.2 Associative and commutative operations . . . . . . .
10.3 Restricting operations . . . . . .. ... ... .. ..
10.4 Compositions . . . . . . . .. ..
10.5 Identity function . . . . . . .. .. ... ...
10.6 Lifting to subsets . . . . . .. .. ...
10.7 Distributive operations . . . . . . . ... ...

11 More on functions
11.1 Functions and order . . . .. ... ... ... ....
11.2 Projections in cartesian products . . . . . .. . ...
11.3 Induced relations and order isomorphisms . . . . . .

12 Finite sets - introduction
12.1 Definition and basic properties of finite powerset . .

13 Finite sets
13.1 Finite powerset . . . . . . . . . ...
13.2 Finite range functions . . . . ... ... ... .. ..

14 Finite sets 1
14.1 Finite vs. bounded sets . . . . . . .. ... ... ..

15 Finite sets and order relations
15.1 Finite vs. bounded sets . . . . . . . ... ... ...
15.2 Order isomorphisms of finite sets . . . . . . .. ...

16 Equivalence relations
16.1 Congruent functions and projections on the quotient
16.2 Projecting commutative, associative and distributive

60
60

61
61
76
78
79
87

107
107
112
112

120
120

129
129
137

138
138

142
142
143



17 Finite sequences

17.1 Lists as finite sequences . . . . . . .. .. ..
17.2 Lists and cartesian products . . . . . . .. ..

18 Inductive sequences

18.1 Sequences defined by induction . . . . .. ..
18.2 Images of inductive sequences . . . . . . . ..
18.3 Subsets generated by a binary operation . . .

18.4 Inductive sequences with changing generating function . . . .

19 Folding in ZF

19.1 Foldingin ZF . . . . ... ... ... ..

20 Partitions of sets

20.1 Bisections . . . . . . . .. ...
20.2 Partitions . . . . . . ... ..o

21 Enumerations

21.1 Enumerations: definition and notation . . . .
21.2 Properties of enumerations . . . ... .. ..

22 Semigroups
22.1 Products of sequences of semigroup elements

22.2 Products over sets of indices . . . . . . . ...
22.3 Commutative semigroups . . . . . . .. ...

23 Commutative Semigroups

23.1 Sum of a function over aset . . . . . . . . ..

24 Monoids

24.1 Definition and basic properties . . . . . . ..

25 Groups - introduction

25.1 Definition and basic properties of groups . . .
25.2 Subgroups . . . .. ...

26 Groups 1

26.1 Translations . . . . . . . . . ... ... ....
26.2 Odd functions . . . . . . .. ...

27 Groups - and alternative definition

27.1 An alternative definition of group . . . . . . .

28 Abelian Group

28.1 Rearrangement formulae . . . . . ... .. ..

161
161
175

177
178
185
186
188

192
193

197
197
200

201
201
202

205
205
209
212

224
224

228
228

233
233
243

249
249
256

257
258

259



29 Groups 2

29.1 Lifting groups to function spaces . . . . . ... ... ... ..
29.2 Equivalence relations on groups . . . . . .. ... L.
29.3 Normal subgroups and quotient groups . . . . . . ... .. ..
29.4 Function spaces as monoids . . . . . .. ... ... L.

30 Groups 3

30.1 Group valued finite range functions . . . . . . .. ... .. ..

30.2 Almost homomorphisms .

30.3 The classes of almost homomorphisms . . . . ... ... ...
30.4 Compositions of almost homomorphisms . . . . . ... .. ..
30.5 Shifting almost homomorphisms . . . . .. .. .. ... ...

31 Direct product
31.1 Definition . . ... .. ..

31.2 Associative and commutative operations . . . . . .. ... ..

32 Ordered groups - introduction

32.1 Ordered groups . . . . . .
32.2 Inequalities . .. ... ..

32.3 The set of positive elements . . . . . . ... ... ... ....

32.4 Intervals and bounded sets

33 More on ordered groups

33.1 Absolute value and the triangle inequality . . . . . . ... ..
33.2 Maximum absolute valueof aset . . . . ... ... ... ...

33.3 Alternative definitions . .
33.4 Odd Extensions . . . . . .

33.5 Functions with infinite limits . . . . . . . . .. ... ... ..

34 Rings - introduction

34.1 Definition and basic properties . . . . . ... ... ... ...

34.2 Rearrangement lemmas .

35 More on rings

35.1 The ring of classes of almost homomorphisms . . . . . .. ..

36 Ordered rings
36.1 Definition and notation .

36.2 Absolute value for ordered rings . . . . . . . ... ... .. ..

36.3 Positivity in ordered rings

272
272
277
280
285

286
286
288
296
299
308

309
309
310

311
311
317
329
336

342
342
354
356
359
362

365
365
372

376
376



37 Cardinal numbers 396

37.1 Some new ideas on cardinals . . . . . . ... ... ... .. .. 396
37.2 Main result on cardinals (without the Aziom of Choice) . . . 400
37.3 Choice axioms . . . . . . . . . . e 403
38 Groups 4 408
38.1 Conjugation of subgroups . . . . .. .. .. ... ... .. .. 408
38.2 Finite groups . . . . . . ... oo 413
38.3 Subgroups generated by sets . . . . . .. ..o 417
38.4 Homomorphisms . . . . . ... ... ... ... ... ..., 418
38.5 First isomorphism theorem . . . .. ... ... ... ..... 424
39 Fields - introduction 432
39.1 Definition and basic properties . . . . . .. .. .. ... ... 432
39.2 Equations and identities . . . . . . . ... ... ... .. 436
393 1/0=0 . . . . .. 437
40 Ordered fields 438
40.1 Definition and basic properties . . . . . . .. ... ... ... 438
40.2 Inequalities . . . . . . . . ... L 442
40.3 Definition of real numbers . . . . . . . . ... ... ... ... 445
41 Integers - introduction 445
41.1 Addition and multiplication as ZF-functions. . . . .. .. .. 446
41.2 Integers as an ordered group . . . . . . . .. ... 452
41.3 Induction on integers. . . . . . . .. ... oL 465
41.4 Bounded vs. finite subsets of integers . . . . . . . ... .. .. 468
42 Integers 1 471
42.1 Integers asaring . . . . . . . . . . Lo 471
42.2 Rearrangement lemmas . . . ... ... ... ... ...... 474
42.3 Integers as an ordered ring . . . . . . . .. ... ... ... .. 480
42.4 Maximum and minimum of a set of integers . . . . . ... .. 491
42.5 The set of nonnegative integers . . . . . ... ... ... ... 495
42.6 Functions with infinite limits . . . . . . ... ... ... ... 502
42.7 Miscelaneous . . . . . . . ... e 507
43 Division on integers 508
43.1 Quotient and reminder . . . . .. . ... ... 508
44 Integers 2 510
44.1 Slopes . . . . . e 510
44.2 Composing slopes . . . . . . . . ..o 533



45 Integers 3
45.1 Positive slopes . . . . . ..
45.2 Inverting slopes . . . . . ..
45.3 Completeness . . . . . . ..

46 Construction real numbers - the generic part
46.1 The definition of real numbers . . . . . . . . .. .. ... ..

47 Construction of real numbers
47.1 Definitions and notation . .

47.2 Multiplication of real numbers . . . . . ... ... ... ...

47.3 The order on reals . . . . .
474 Inverting reals. . . . . . ..
47.5 Completeness . . . . . . ..

48 Complex numbers

48.1 From complete ordered fields to complex numbers . . . . . .

48.2 Axioms of complex numbers

49 Topology - introduction

49.1 Basic definitions and properties . . . . . . ... ...

49.2 Interior of aset . . . . . ..

49.3 Closed sets, closure, boundary. . . . ... ... .. ......

50 Topology 1
50.1 Separation axioms. . . . . .
50.2 Bases and subbases. . . . .
50.3 Product topology . . . . ..

51 Topology 1b

51.1 Compact sets are closed - no need for AC . . . ... ... ..

52 Topology 2
52.1 Continuous functions. . . .
52.2 Homeomorphisms . . . . . .

52.3 Topologies induced by mappings . . . . .. .. .. .. .. ..
52.4 Partial functions and continuity . . . . . . . ... ... ...
52.5 Product topology and continuity . . .. .. .. .. ... ...

52.6 Pasting lemma . . ... ..

53 Topology 3

53.1 The base of the product topology . . . . . . .. .. ... ...

53.2 Finite product of topologies

538
539
550
558

564
564

572
572
o574
578
587
590

611
611
615

627
628
631
633

638
638
639
644

648
649

651
651
656
658
660
663
666



54 Topology 4

54.1
54.2
54.3

Nets . . . . .
Filters . . . . . . . . s
Relation between nets and filters . . . . . . . . ... ...

55 Topology - examples

55.1
55.2
55.3
55.4
55.5
55.6
55.7
55.8
55.9

CoCardinal Topology of aset X . . ... ... ... ...
CoCardinal topology is a topology. . . . . . .. ... ...
Total set, Closed sets, Interior, Closure and Boundary . . .
Special cases and subspaces . . . . ... ... ... ....
Excluded Set Topology . . . . . . .. ... ... ... ...
Excluded set topology is a topology. . . . . .. ... ...
Total set, Closed sets, Interior, Closure and Boundary . . .
Special cases and subspaces . . . . ... ...
Included Set Topology . . . . . . . ... ... ... ....
55.10Included set topology is a topology.
55.11Total set, Closed sets, Interior, Closure and Boundary . . .
55.12Special cases and subspaces

56 More examples in topology

56.1
56.2
56.3
56.4
56.5
56.6
56.7
56.8
56.9

New ideas using a base for a topology . . . .. .. .. ..
The topology of abase . . . . . . .. ... ... ......
Dual Base for Closed Sets . . . . . ... ... ... ....
Partition topology . . . . . . .. ..o oL
Partition topology is a topology. . . . .. ... ... ...
Total set, Closed sets, Interior, Closure and Boundary . . .
Special cases and subspaces . . . .. ... ...
Order topologies . . . . . . . ... .. L.
Order topology is a topology . . . . . . ... ... ....
56.10Total set
56.11Right order and Left order topologies.

56.11.1 Right and Left Order topologies are topologies

56.11.2Total set . . . . . . . . . ...
56.12Union of Topologies

57 Properties in Topology

57.1
57.2

Properties of compactness . . . . .. ... ... L.
Properties of numerability . . . . .. ... ... ... ...

680
681
684
690

701
701
701

. 703

707
709
710

. 711

714
715
715

. 716

719

721
721
721
725
727
728

. 729

735
737
737
748
749

. 750

751
751

753

757

57.3 Relations between numerability properties and choice principles759

57.4

Relation between numerability and compactness . . . . .

765



58 Topology 5
58.1 Some results for separation axioms . . . . . ... ... ....
58.2 Hereditability . . . . . .. .. .. . o
58.3 Spectrum and anti-properties . . . . . ... ... ... .. ..

59 Topology 6
59.1 Image filter . . . . . . . . .. L
59.2 Continuous at a point vs. globally continuous . . . . . . . ..
59.3 Continuous functions and filters . . . . . . . ... .. ... ..

60 Topology 7
60.1 Connection Properties . . . . . . . . .. .. ... ... ...,

61 Topology 8
61.1 Definition of quotient topology . . . . . .. ... ... . ...
61.2 Quotient topologies from equivalence relations . . . . . . . ..

62 Topology 9
62.1 Group of homeomorphisms . . . . ... .. ... ... ....
62.2 Examples computed . . . . . ... ... L.
62.3 Properties preserved by functions . . . . . . ... .. ... ..

63 Topology 10
63.1 Closure and closed sets in product space . . . . . ... .. ..
63.2 Separation properties in product space . . . . . .. ... ...
63.3 Connection properties in product space . . . .. ... .. ..

64 Topology 11
64.1 Order topologies . . . . . . . . . .. ..o .
64.2 Separation properties. . . . . . . . .. ... ... ...
64.3 Connectedness properties . . . . . .. ... ... ... ....
64.4 Numerability axioms . . . . .. ... ... ... ... ... ..

65 Topological groups - introduction
65.1 Topological group: definition and notation . . . . . .. .. ..
65.2 Interval arithmetic, translations and inverse of set . . . . . .
65.3 Neighborhoods of zero . . . . . . ... ... ... ... ....
65.4 Closure in topological groups . . . . .. .. .. ... ... ..
65.5 Sums of sequences of elements and subsets . . . . .. ... ..

66 Properties in topology 2
66.1 Local properties. . . . . . . . .. .. ... ... ... ...,
66.2 First examples . . . . .. . ... L o o
66.3 Local compactness . . . . . ... ... ... ... ... ...
66.4 Compactification by one point . . . . . . . . ... ... .. ..

779
779
796
799

830
830
832
833

835
835

868
868
870

878
878
880
893

898
898
900
905

910
910
910
912
932

941
942
946
947
948
950



66.5 Hereditary properties and local properties . . . . . .. .. .. 973

67 Topological groups 1 1007
67.1 Separation properties of topological groups . . . ... .. .. 1007
67.2 Existence of nice neighbourhoods. . . . . . . .. .. ... ... 1010
67.3 Rest of separation axioms . . . . ... ... ... ....... 1012
67.4 Local properties. . . . . . . . .. .. oo 1017

68 Topological groups 2 1019
68.1 Quotients of topological groups . . . . ... ... ... .... 1019

69 Topological groups 3 1025
69.1 Subgroups topologies . . . . . . . ... ... 1025

70 Metamath introduction 1035
70.1 Importing from Metamath - how is it done . . .. ... ... 1035
70.2 The context for Metamath theorems . . . . . ... ... ... 1036

71 Metamath interface 1039
71.1 MMisarO and complex(0 contexts. . . . .. . ... ... .... 1039

72 Metamath sampler 1045
72.1 Extended reals and order . . .. ... ... ... ....... 1046
72.2 Natural real numbers . . . . . . . ... .. ... ... ..... 1050
72.3 Infimum and supremum in real numbers . . . . . . ... ... 1052

1 Introduction to the IsarMathLib project

theory Introduction imports equalities
begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in
a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib



contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is
disjoint with} put between two sets to denote our notion of disjointness.
The left side of the = symbol is the notion being defined, the right side
says how we define it. In Isabelle 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.
definition

AreDisjoint (infix "{is disjoint with}" 90) where

"A {is disjoint with} B = A N B = 0"

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or ”corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the ”shows” keyword we give the statement to show.
The «+— symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ” A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}
B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with "assume A {is disjoint with} B and the last
statement is "then have B {is disjoint with} A”. It is a typical pattern
when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the — symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with "moreover”. The ”"show” keyword is like "have”, except that
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it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:
shows "A {is disjoint with} B +— B {is disjoint with} A"
proof -
have "A {is disjoint with} B — B {is disjoint with} A"
proof -
{ assume "A {is disjoint with} B"
then have "A N B = 0" using AreDisjoint_def by simp
hence "B N A = 0" by auto
then have "B {is disjoint with} A"
using AreDisjoint_def by simp
} thus ?thesis by simp
ged
moreover have "B {is disjoint with} A — A {is disjoint with} B"
proof -
{ assume "B {is disjoint with} A"
then have "B N A = 0" using AreDisjoint_def by simp
hence "A N B = 0" by auto
then have "A {is disjoint with} B"
using AreDisjoint_def by simp
} thus 7thesis by simp
qed
ultimately show 7thesis by blast
qed

1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_ia reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_zF_1
on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The funci theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain "datatype” (?7) with some recursive properties. IsarMathLib’s
Finitel and Finite_ZF_1 theories develop more facts about this notion.
These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
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approach is presented in Finite_ZF theory file.
In FinOrd_zF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).
InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form ag = x, apn+1 = f(an)-

Fold_ZF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form ag-aq - .. - ay, (i.e. products
of finite sequences), where ”-” is an associative binary operation.
CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of
depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.

Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_zF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.

In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real _ZF_1.
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In the IntDiv_ZF_IML theory we translate some properties of the integer
quotient and reminder functions studied in the standard Isabelle’s IntDiv_2zF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

Cardinal_ZF provides a couple of theorems about cardinals that are mostly
used for studying properties of topological properties (yes, this is kind of
meta). The main result (proven without AC) is that if two sets can be
injectively mapped into an infinite cardinal, then so can be their union.
There is also a definition of the Axiom of Choice specific for a given cardinal
(so that the choice function exists for families of sets of given cardinality).
Some properties are proven for such predicates, like that for finite families of
sets the choice function always exists (in ZF) and that the axiom of choice
for a larger cardinal implies one for a smaller cardinal.

Group_ZF_4 considers conjugate of subgroup and defines simple groups. A
nice theorem here is that endomorphisms of an abelian group form a ring.
The first isomorphism theorem (a group homomorphism A induces an iso-
morphism between the group divided by the kernel of h and the image of h)
is proven.

Turns out given a property of a topological space one can define a local ver-
sion of a property in general. This is studied in the the Topology_ZF_properties_2
theory and applied to local versions of the property of being finite or com-
pact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff).
There are a couple of nice applications, like one-point compactification that
allows to show that every locally compact Hausdorff space is regular. Also
there are some results on the interplay between hereditability of a property
and local properties.

For a given surjection f : X — Y, where X is a topological space one can
consider the weakest topology on Y which makes f continuous, let’s call it
a quotient topology generated by f. The quotient topology generated by an
equivalence relation r on X is actually a special case of this setup, where f
is the natural projection of X on the quotient X/r. The properties of these
two ways of getting new topologies are studied in Topology_ZF_8 theory.
The main result is that any quotient topology generated by a function is
homeomorphic to a topology given by an equivalence relation, so these two
approaches to quotient topologies are kind of equivalent.
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As we all know, automorphisms of a topological space form a group. This
fact is proven in Topology_ZF_9 and the automorphism groups for co-cardinal,
included-set, and excluded-set topologies are identified. For order topologies
it is shown that order isomorphisms are homeomorphisms of the topology
induced by the order. Properties preserved by continuous functions are stud-
ied and as an application it is shown for example that quotient topological
spaces of compact (or connected) spaces are compact (or connected, resp.)

The Topology_ZF_10 theory is about products of two topological spaces. It
is proven that if two spaces are Ty (or 17, T, regular, connected) then their
product is as well.

Given a total order on a set one can define a natural topology on it gener-
ated by taking the rays and intervals as the base. The Topology_zF_11 the-
ory studies relations between the order and various properties of generated
topology. For example one can show that if the order topology is connected,
then the order is complete (in the sense that for each set bounded from
above the set of upper bounds has a minimum). For a given cardinal xk we
can consider generalized notion of k — separability. Turns out k-separability
is related to (order) density of sets of cardinality x for order topologies.

Being a topological group imposes additional structure on the topology of the
group, in particular its separation properties. In Topological Group_ZF_1.thy
theory it is shown that if a topology is Tp, then it must be T3 , and that the
topology in a topological group is always regular.

For a given normal subgroup of a topological group we can define a topology
on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy
theory it is shown that such topology on the quotient group makes it a topo-
logical group.

The Topological_Group_ZF_3.thy theory studies the topologies on subgroups
of a topological group. A couple of nice basic properties are shown, like
that the closure of a subgroup is a subgroup, closure of a normal subgroup
is normal and, a bit more surprising (to me) property that every locally-
compact subgroup of a Ty group is closed.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0 context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisar0
context is valid (can be used) in the complex0 context. All theories us-
ing the translated results will import the Metamath_interface theory. The
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Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2
contain the theorems imported from the Metamath’s set.mm database. As
the translated proofs are rather verbose these theories are not printed in
this proof document. The full list of translated facts can be found in the
Metamath_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are

printed in this proof document as examples of how translated proofs look
like.

end

2 First Order Logic

theory Foll imports Trancl
begin

Isabelle/ZF builds on the first order logic. Almost everything one would
like to have in this area is covered in the standard Isabelle libraries. The
material in this theory provides some lemmas that are missing or allow for
a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to
do something like using trans_def results up Isabelle in an infinite loop).

lemma Foll_L2: assumes
Al: W xyz (x,y) €Er Ay, z) €r — (x, z) € "
shows "trans(r)"
proof -
from A1 have
"W xyz (x,y) €r — (y,z) €Er — (x, z) € "
using imp_conj by blast
then show ?7thesis unfolding trans_def by blast
qed

Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Foll_L3: assumes Al: "trans(r)" and A2: "( a,b) € r A ( b,c)
€ r"
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shows "( a,c) € r"
proof -
from A1l have "Vxy z. (x,y) €r — (y, z2) € — (x, z) € "
unfolding trans_def by blast
with A2 show ?7thesis using imp_conj by fast
qed

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Foll_14:

assumes Al: "antisym(r)" and A2: "( a,b) € r" "( b,a) € r"
shows "a=b"
proof -

from A1 have "V xy. ( x,y) € r — (y,x) € r — x=y"
unfolding antisym_def by blast
with A2 show "a=b" using imp_conj by fast
qed

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of given three statements is true.

definition
"Exactly_1_of_3_holds(p,q,r) =
(pvgvr) A (p — q A -r) A (@ — p A ) A (xr — —=p A "

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

lemma Foll_L5:
assumes "pvVqVr"
and "p — —q A —r"
and "q — —-p A —r"
and "r — —-p A —q"
shows "Exactly_1_of_3_holds(p,q,r)"
proof -
from assms have
"(pVaqVr) A (p — q A ) AN (@ — p A 1) AN (r — —p A Q"
by blast
then show "Exactly_1_of_3_holds (p,q,r)"
unfolding Exactly_1_of_3_holds_def by fast
qed

If exactly one of p, ¢, holds and p is not true, then g or r.

lemma Foll_L6:
assumes Al: "—p" and A2: "Exactly_1_of_3_holds(p,q,r)"
shows "qVr"
proof -
from A2 have
"(pvgvr) A (p — g A —r) A (@ — p A ) A (x — =p A "
unfolding Exactly_1_of_3_holds_def by fast
hence "p V q V r" by blast
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with A1 show "q V r" by simp
qed

If exactly one of p, ¢, holds and ¢ is true, then r can not be true.

lemma Foll_L7:
assumes Al: "q" and A2: "Exactly_1_of_3_holds(p,q,r)"
shows "—r"
proof -
from A2 have
"(pvgqvr) A (p — =g A -r) AN (g — pA ) A (r — —p A "
unfolding Exactly_1_of_3_holds_def by fast
with Al show "—r" by blast
qed

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds(p,q,r)
predicate. More on that at www.solcon.nl/mklooster/calc/calc-tri.html .

lemma Foll_L8:
shows "Exactly_1_of_3_holds(p,q,r) <— (p+<—q<—r) A —(pAgQAr)"
proof
assume "Exactly_1_of_3_holds(p,q,r)"
then have
"(pvgvr) A (p — g A —r) A (@ — p A 1) A (x — =p A "
unfolding Exactly_1_of_3_holds_def by fast
thus "(p<—qg+—r) A = (pAgAr)" by blast
next assume "(p+—q<—r1) A —(pAgAT)"
hence
"(pvgvr) A (p — g A r) A (@ — p A ) A (x — p A D"
by auto
then show "Exactly_1_of_3_holds(p,q,r)"
unfolding Exactly_1_of_3_holds_def by fast
qed

A property of the Exactly_1_of_3_holds predicate.

lemma Foll_L8A: assumes Al: "Exactly_1_of_3_holds(p,q,r)"

shows "p «— —-(q V )"
proof -

from A1 have "(pvgqvr) A (p — -q A -r) A (@ — -p A r) A (r —
-p A )"

unfolding Exactly_1_of_3_holds_def by fast

then show "p <— —(q V r)" by blast

qed

Exclusive or definition. There is one also defined in the standard Isabelle,
denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

definition
Xor (infixl "Xor" 66) where
"p Xor g = (pvg) A =(p A "
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The ”exclusive or” is the same as negation of equivalence.

lemma Foll_L9: shows "p Xor q <— —(p<—q)"
using Xor_def by auto

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes Al: "equiv(X,r)" and A2: "(x,y) € "
shows "(y,x) € r"
proof -
from Al have "sym(r)" using equiv_def by simp
then have "Vx y. (x,y) € r — (y,x) € r"
unfolding sym_def by fast
with A2 show "(y,x) € r" by blast
qed

end

3 ZF set theory basics

theory ZF1 imports equalities
begin

Standard Isabelle distribution contains lots of facts about basic set theory.
This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If one collection is contained in another, then we can say the same abot their
unions.

lemma collection_contain: assumes "ACB" shows "(JA C (JB"
proof

fix x assume "x € [JA"

then obtain X where "x€X" and "X€A" by auto

with assms show "x € |JB" by auto
qed

If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes "C#0" and "VyeC. b(y) = A"
shows "(|JyeC. b(y)) = A" using assms by blast

The union af all values of a constant meta-function belongs to the same set
as the constant.
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lemma ZF1_1_12: assumes A1:"C#0" and A2: "VxeC. b(x) € A"
and A3: "Vx y. x€C A yeC — b(x) = b(y)"
shows "(|JxeC. b(x))eA"
proof -
from A1 obtain x where D1: "xeC" by auto
with A3 have "VyeC. b(y) = b(x)" by blast
with A1 have "(|JyeC. b(y)) = b(x)"
using ZF1_1_L1 by simp
with D1 A2 show ?7thesis by simp
qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised Isabelle can not handle this

automatically.

lemma ZF1_1_L4: assumes Al: "VxeX.VyeY. a(x,y) = b(x,y)"
shows "{a(x,y). (x,y) € XxY} = {b(x,y). (x,y) € XxY}"
proof
show "{a(x, y). (x,y) € X x Y} C {b(x, y). (x,y) € X x Y}"
proof
fix z assume "z € {a(x, y) . (x,y) € X x Y}"
with A1 show "z € {b(x,y).(x,y) € XxY}" by auto
qed
show "{b(x, y). (x,y) € X x Y} C {a(x, y). (x,y) € X x Y}"
proof
fix z assume "z € {b(x, y). (x,y) € X x Y}"
with A1 show "z € {a(x,y).(x,y) € XxY}" by auto
qed
qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. This is similar to ZF1_1_L4, except that the
set definition varies over peXxY rather than ( x,y)eXxY.

lemma ZF1_1_L4A: assumes Al: "VxeX.VyeY. a({ x,y)) = b(x,y)"
shows "{a(p). p € XxY} = {b(x,y). (x,y) € XxY}"
proof
{ fix z assume "z € {a(p). peXxY}"
then obtain p where D1: "z=a(p)" "peXxY" by auto
let 7x = "fst(p)" let 7y = "snd(p)"
from A1 D1 have "z € {b(x,y). (x,y) € XxY}" by auto
} then show "{a(p). p € XxY} C {b(x,y). (x,y) € XxY}" by blast
next
{ fix z assume "z € {b(x,y). (x,y) € XxY}"
then obtain x y where D1: "(x,y) € XXY" "z=b(x,y)" by auto
let 7p = "( x,y)"
from A1 D1 have "7peXxY" "z = a(?p)" by auto
then have "z € {a(p). p € XxY}" by auto
} then show "{b(x,y). (x,y) € XxY} C {a(p). p € XxY}" by blast
qed
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A lemma about inclusion in cartesian products. Included here to remember
that we need the U x V # () assumption.

lemma prod_subset: assumes "UxV#0" "UxV C XxY" shows "UCX" and "VCY"
using assms by auto

A technical lemma about sections in cartesian products.

lemma section_proj: assumes "A C XxY" and "UxV C A" and "x € U"
E Vll

shows "U C {teX. (t,y) € A}" and "V C {teY. (x,t) € A}"

using assms by auto

y

If two meta-functions are the same on a set, then they define the same set
by separation.

lemma ZF1_1_L4B: assumes "VxecX. a(x) = b(x)"
shows "{a(x). x€X} = {b(x). x&X}"
using assms by simp

A set defined by a constant meta-function is a singleton.
lemma ZF1_1_L5: assumes "X#0" and "Vxe€X. b(x) = c"
shows "{b(x). x€X} = {c}" using assms by blast
Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.

lemma subset_with_property: assumes "Y = {x€X. b(x)}"
shows "Y C X"
using assms by auto

We can choose an element from a nonempty set.

lemma nonempty_has_element: assumes "X#0" shows "Jx. xeX"
using assms by auto

In Isabelle/ZF the intersection of an empty family is empty. This is exactly
lemma Inter_O from Isabelle’s equalities theory. We repeat this lemma
here as it is very difficult to find. This is one reason we need comments
before every theorem: so that we can search for keywords.

lemma inter_empty_empty: shows "(]0 = 0" by (rule Inter_0)
If an intersection of a collection is not empty, then the collection is not

empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty.

lemma inter_nempty_nempty: assumes "[]A # 0" shows "A#Q"
using assms by auto

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A x B, where A€ S,BeT.

definition
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"ProductCollection(T,8) = |JUET.{UxV. Ves}"

The union of the product collection of collections S, T is the cartesian prod-
uct of JS and YT

lemma ZF1_1_L6: shows "|J ProductCollection(S,T) = [JS x UT"
using ProductCollection_def by auto

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes Al: "I#0" and A2: "Vi€I. P(i) C X"
shows "( (i€I. P(i) ) C X"
proof -
from A1 obtain iy where "iy € I" by auto
with A2 have "( ((i€I. P(i) ) C P(ip)" and "P(ip) C X"
by auto
thus "( (i€I. P(i) ) C X" by auto
qed

Isabelle/ZF has a "THE” construct that allows to define an element if there
is only one such that is satisfies given predicate. In pure ZF we can express
something similar using the indentity proven below.

lemma ZF1_1_L8: shows "|J {x} = x" by auto

Some properties of singletons.

lemma ZF1_1_19: assumes Al: "J! x. x€A A @o(x)"
shows
"Ja. {x€A. p(x)} = {a}"
"J {xeA. px)} € A"
"ol {xeA. oD
proof -
from A1 show "Ja. {x€A. p(x)} = {a}" by auto
then obtain a where I: "{x€A. ¢(x)} = {a}" by auto
then have "|J {x€A. p(x)} = a" by auto
moreover
from I have "a € {x€A. ¢(x)}" by simp
hence "acA" and "p(a)" by auto
ultimately show "|J {z€A. ¢(x)} € A" and "p(J {x€A. pIP"
by auto
qed

A simple version of ZF1_1_L9.

corollary sigleton_extract: assumes "J! x. x€A"
shows "(|J A) € A"

proof -
from assms have "3J! x. x€A A True" by simp
then have "|J {x€A. True} € A" by (rule ZF1_1_L9)
thus "(|J A) € A" by simp

qed
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A criterion for when a set defined by comprehension is a singleton.

lemma singleton_comprehension:
assumes Al: "yeX" and A2: "VxeX. VyeX. P(x) = P(y)"
shows "(|J{P(x). x€X}) = P(y)"
proof -
let 74 = "{P(x). xeX}"
have "3! c. ¢ € 7A"
proof
from A1 show "dc. c € 7A" by auto
next
fix a b assume "a € 7A" and "b € 7A"
then obtain x t where
"x € X" "a =P(x)" and "t € X" "b = P(t)"
by auto
with A2 show "a=b" by blast
qed
then have "(|J7A) € ?A" by (rule sigleton_extract)
then obtain x where "x € X" and "(|J74) = P(x)"
by auto
from A1 A2 ‘x € X have "P(x) = P(y)"
by blast
with <(|J?A) = P(x)‘ show "(|J7A) = P(y)" by simp
qed

Adding an element of a set to that set does not change the set.

lemma set_elem_add: assumes "x€X" shows "X U {x} = X" using assms
by auto

Here we define a restriction of a collection of sets to a given set. In romantic
math this is typically denoted X N M and means {X N A: A € M}. Note
there is also restrict(f, A) defined for relations in ZF.thy.

definition
RestrictedTo (infixl "{restricted to}" 70) where
"M {restricted to} X = {X N A . A &€ M}"

A lemma on a union of a restriction of a collection to a set.

lemma union_restrict:
shows "|J (M {restricted to} X) = (M) N X"
using RestrictedTo_def by auto

Next we show a technical identity that is used to prove sufficiency of some
condition for a collection of sets to be a base for a topology.

lemma ZF1_1_110: assumes Al: "VUeC. JA€B. U = [JA"
shows "JUJ {J{AeB. U = [JA}. UeC} = |JC"

proof
show "(J(Juec. U{A € B . U = [JA}) C |JC" by blast
show "(Jc € J(Juec. U{a € B . U =AD"
proof

22



fix x assume "x € [JC"
show "x € J(Uuec. U{a € B . U = JAD"
proof -
from ‘x € |JC¢ obtain U where "UEC A x€U" by auto
with Al obtain A where "A€B A U = [JA" by auto
from ‘UeC A x€U¢ ‘AeB A U = [JA¢ show "xe |J(UUeCc. J{a € B
.U = UJapr
by auto
qed
qged
qed

Standard Isabelle uses a notion of cons(A,a) that can be thought of as
AuU{a}.

lemma consdef: shows "cons(a,A) = A U {a}"
using cons_def by auto

If a difference between a set and a sigleton is empty, then the set is empty
or it is equal to the sigleton.
lemma singl_diff_empty: assumes "A - {x} = 0"

shows "A = 0 V A = {x}"

using assms by auto

If a difference between a set and a sigleton is the set, then the only element
of the singleton is not in the set.

lemma singl_diff_eq: assumes Al: "A - {x} = A"
shows "x ¢ A"

proof -
have "x ¢ A - {x}" by auto
with Al show "x ¢ A" by simp

qed

A basic property of sets defined by comprehension. This is one side of
standard Isabelle’s separation that is in the simp set but somehow not
always used by simp.

lemma comprehension: assumes "a € {x€X. p(x)}"
shows "acX" and "p(a)" using assms by auto

end

4 Natural numbers in IsarMathLib

theory Nat_ZF_IML imports Arith
begin

The ZF set theory constructs natural numbers from the empty set and the
notion of a one-element set. Namely, zero of natural numbers is defined
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as the empty set. For each natural number n the next natural number is
defined as n U {n}. With this definition for every non-zero natural number
we get the identity n = {0,1,2,..,n —1}. It is good to remember that when
we see an expression like f : n — X. Also, with this definition the relation
”less or equal than” becomes ”C” and the relation ”less than” becomes ”€”.

4.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the
one that uses the = sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The next theorem is a version of induction on natural numbers that I was
thought in school.

theorem ind_on_nat:
assumes Al: "n€nat" and A2: "P(0)" and A3: "Vké&nat. P(k)—P(succ(k))"
shows "P(n)"
proof -
note Al A2
moreover
{ fix x
assume "x€nat" "P(x)"
with A3 have "P(succ(x))" by simp }
ultimately show "P(n)" by (rule nat_induct)
qed

A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes Al: "n € nat" and A2: "n#0"
shows "dké€nat. n = succ(k)"
proof -
from A1 have "n € {0} U {succ(k). kénat}"
using nat_unfold by simp
with A2 show ?7thesis by simp
qed

What is succ, anyway?

lemma succ_explained: shows "succ(n) = n U {n}"
using succ_iff by auto

Empty set is an element of every natural number which is not zero.

lemma empty_in_every_succ: assumes Al: "n € nat"
shows "0 € succ(n)"
proof -
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note Al

moreover have "0 € succ(0)" by simp

moreover

{ fix k assume "k € nat" and A2: "0 € succ(k)"
then have "succ(k) C succ(succ(k))" by auto
with A2 have "0 € succ(succ(k))" by auto

} then have "Vk € nat. 0 € succ(k) — 0 € succ(succ(k))"
by simp

ultimately show "0 € succ(n)" by (rule ind_on_nat)

qed

If one natural number is less than another then their successors are in the
same relation.

lemma succ_ineq: assumes Al: "n € nat"
shows "Vi € n. succ(i) € succ(n)"
proof -
note Al
moreover have "Vk € 0. succ(k) € succ(0)" by simp
moreover
{ fix k assume A2: "Vick. succ(i) € succ(k)"
{ fix i assume "i € succ(k)"
then have "i € k V i = k" by auto
moreover
{ assume "iek"
with A2 have "succ(i) € succ(k)" by simp
hence "succ(i) € succ(succ(k))" by auto }
moreover
{ assume "i = k"
then have "succ(i) € succ(succ(k))" by auto }
ultimately have "succ(i) € succ(succ(k))" by auto
} then have "Vi € succ(k). succ(i) € succ(succ(k))"
by simp
} then have "Vk € nat.
( (Viek. succ(i) € succ(k)) — (Vi € succ(k). succ(i) € succ(succ(k)))
)’l
by simp
ultimately show "Vi € n. succ(i) € succ(n)" by (rule ind_on_nat)
qed

For natural numbers if £ C n the similar holds for their successors.

lemma succ_subset: assumes Al: "k € nat" '"n € nat" and A2: "kCn"
shows "succ(k) C succ(n)"
proof -

from A1 have T: "Ord(k)" and "Ord(n)"
using nat_into_Ord by auto

with A2 have "succ(k) < succ(n)"
using subset_imp_le by simp

then show "succ(k) C succ(n)" using le_imp_subset
by simp
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qed

For any two natural numbers one of them is contained in the other.

lemma nat_incl_total: assumes Al: "i € nat" "j € nat"
shows "i C j v j C i"

proof -
from A1 have T: "Ord(i)"  "Ord(j)"

using nat_into_Ord by auto
then have "i€j V i=j V j€i" using Ord_linear
by simp
moreover
{ assume "iej"
with T have "iCj V jCi"
using 1t_def lel le_imp_subset by simp }
moreover
{ assume "i=j"
then have "iCj VvV jCi" by simp }
moreover
{ assume "jei"
with T have "iCj Vv jCi"
using 1t_def lel le_imp_subset by simp }
ultimately show "i C j V j € i" by auto
qed

The set of natural numbers is the union of all successors of natural numbers.

lemma nat_union_succ: shows "nat = (|Jn € nat. succ(n))"
proof
show "nat C (|Jn € nat. succ(n))" by auto
next
{ fix k assume A2: "k € (Jn € nat. succ(@))"
then obtain n where T: "n € nat" and I: "k € succ(n)"
by auto
then have "k < n" using nat_into_Ord 1lt_def
by simp
with T have "k € nat" using le_in_nat by simp
} then show "(|Jn € nat. succ(n)) C nat" by auto
qed

Successors of natural numbers are subsets of the set of natural numbers.

lemma succnat_subset_nat: assumes Al: "n € nat" shows "succ(n) C nat"
proof -

from A1 have "succ(n) C (Jn € nat. succ(n))" by auto

then show "succ(n) C nat" using nat_union_succ by simp
qed

Element of a natural number is a natural number.

lemma elem_nat_is_nat: assumes Al: "n € nat" and A2: "ken"
shows "k < n" "k € nat" "k < n" "<k,n> € Le"
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proof -
from A1 A2 show "k < n" using nat_into_Ord 1lt_def by simp
with Al show "k € nat" using lt_nat_in_nat by simp
from ‘k < n‘ show "k < n" using lel by simp
with A1 ‘k € nat¢ show "(k,n) € Le" using Le_def
by simp
qed

The set of natural numbers is the union of its elements.

lemma nat_union_nat: shows "nat = (J nat"
using elem_nat_is_nat by blast

A natural number is a subset of the set of natural numbers.

lemma nat_subset_nat: assumes Al: "n € nat" shows "n C nat"
proof -

from A1 have "n C |J nat" by auto

then show "n C nat" using nat_union_nat by simp
qed

Adding a natural numbers does not decrease what we add to.

lemma add_nat_le: assumes Al: "n € nat" and A2: "k € nat"
shows
"n < n #+ k"
"n C n #+ k"
"n C k #+ n"

proof -
from A1 A2 have "n < n" "0 < k" "n € nat" "k € nat"

using nat_le_refl nat_0_le by auto

then have "n #+ 0 < n #+ k" by (rule add_le_mono)
with Al show "n < n #+ k" using add_O_right by simp
then show "n C n #+ k" using le_imp_subset by simp
then show "n C k #+ n" using add_commute by simp

qed

Result of adding an element of k is smaller than of adding k.

lemma add_1t_mono:
assumes "k € nat" and "jek"
shows
"(n #+ j) < (n #+ K"
"(n #+ j) € (n #+ k)"
proof -
from assms have "j < k" using elem_nat_is_nat by blast
moreover note ‘k € nat‘
ultimately show "(n #+ j) < (n #+ kK" "(n #+ j) € (n #+ "
using add_lt_mono2 1tD by auto
qed

A technical lemma about a decomposition of a sum of two natural numbers:
if a number ¢ is from m + n then it is either from m or can be written as a
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sum of m and a number from n. The proof by induction w.r.t. to m seems
to be a bit heavy-handed, but I could not figure out how to do this directly
from results from standard Isabelle/ZF.

lemma nat_sum_decomp: assumes Al: "n € nat" and A2: "m € nat"
shows "Vi e m#+ n. 1 €mV (3j € n. i =m #+ "
proof -
note Al
moreover from A2 have "Vi €é m #+ 0. i e m V (3j € 0. i =m #+ "
using add_O_right by simp
moreover have "Vkéenat.
MVMiem#+k. ienV (Tj €k, i=mnt#+j) —
(Vi € m #+ succ(k). i € mV (Fj € succ(k). 1 =m #+ j))"
proof -
{ fix k assume A3: "k € nat"
{ assume A4: "Vi e m#+ k. i €mV (Fj € k. 1 =m #+ j)"
{ fix i assume "i € m #+ succ(k)"
then have "i € m #+ k V 1 = m #+ k" using add_succ_right
by auto
moreover from A4 A3 have
"iem#+r k — 1ie€mV (3] € succ(k). i =m #+ "

by auto
ultimately have "i € m V (3j € succ(k). i = m #+ j)"
by auto
} then have "Vi € m #+ succ(k). i € m V (3 € succ(k). i = m #+ j)"
by simp

} then have "(Vi e m #+ k. i e m V (3j € k. i =n #+ j)) —

(Vi € m #+ succ(k). i € mV (Fj € succ(k). 1 =m #+ j))"
by simp

} then show ?7thesis by simp
qed

ultimately show "Vi e m #+ n. i € m V (3j € n. 1 = m #+ j)"
by (rule ind_on_nat)
qed

A variant of induction useful for finite sequences.

lemma fin_nat_ind: assumes Al: "n € nat" and A2: "k € succ(n)"
and A3: "P(0)" and A4: "Vjen. P(j) — P(succ(j))"
shows "P(k)"
proof -
from A2 have "k € n V k=n" by auto
with Al have "k € nat" using elem_nat_is_nat by blast
moreover from A3 have "0 € succ(n) — P(0)" by simp
moreover from Al A4 have
"Wk € nat. (k € succ(n) — P(k)) — (succ(k) € succ(n) — P(succ(k)))"
using nat_into_Ord Ord_succ_mem_iff by auto
ultimately have "k € succ(n) — P(k)"
by (rule ind_on_nat)
with A2 show "P(k)" by simp
qed
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Some properties of positive natural numbers.

lemma succ_plus: assumes "n € nat" "k € nat"
shows
"succ(n #+ j) € nat"
"succ(n) #+ succ(j) = succ(succ(n #+ j))"
using assms by auto

4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form
{n+j:j€0..k—1}.

The interval is determined by two parameters: starting point and length.
Recall that in standard Isabelle’s Arith.thy the symbol #+ is defined as the
sum of natural numbers.

definition
"NatInterval(n,k) = {n #+ j. jek}"

Subtracting the beginning af the interval results in a number from the length
of the interval.It may sound weird, but note that the length of such interval
is a natural number, hence a set.

lemma inter_diff_in_len:
assumes Al: "k € nat" and A2: "i € NatInterval(n,k)"
shows "i #- n € k"
proof -
from A2 obtain j where I: "i = n #+ j" and II: "j € k"
using NatInterval_def by auto
from Al II have "j € nat" using elem_nat_is_nat by blast
moreover from I have "i #- n = natify(j)" using diff_add_inverse
by simp
ultimately have "i #- n = j" by simp
with IT show ?7thesis by simp
qed

Intervals don’t overlap with their starting point and the union of an interval
with its starting point is the sum of the starting point and the length of the
interval.

lemma length_start_decomp: assumes Al: "n € nat" "k € nat"
shows
"n N NatInterval(n,k) = 0"
"n U NatInterval(n,k) = n #+ k"

proof -
{ fix i assume A2: "i € n" and "i € NatInterval(n,k)"
then obtain j where I: "i = n #+ j" and II: "j € k"
using NatInterval_def by auto
from A1 have "k € nat" using elem_nat_is_nat by blast
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with IT have "j € nat" using elem_nat_is_nat by blast
with A1 I have "n < i" using add_nat_le by simp
moreover from A1l A2 have "i < n" using elem_nat_is_nat by blast
ultimately have False using le_imp_not_lt by blast
} thus "n N NatInterval(n,k) = 0" by auto
from A1 have "n C n #+ k" using add_nat_le by simp
moreover
{ fix i assume "i € NatInterval(n,k)"
then obtain j where III: "i = n #+ j" and IV: "j € k"
using NatInterval_def by auto
with A1 have "j < k" using elem_nat_is_nat by blast
with A1 IIT have "i € n #+ k" using add_lt_mono2 1tD
by simp }
ultimately have "n U NatInterval(n,k) C n #+ k" by auto
moreover from A1 have "n #+ k C n U NatInterval(n,k)"
using nat_sum_decomp NatInterval_def by auto
ultimately show "n U NatInterval(n,k) = n #+ k" by auto
qed

Sme properties of three adjacent intervals.

lemma adjacent_intervals3: assumes "n € nat" "k € nat" "m € nat"
shows
"n #+ k #+ m (n #+ k) U NatInterval(n #+ k,m)"
"n #+ k #+ m = n U NatInterval(n,k #+ m)"
"n #+ k #+ m = n U NatInterval(n,k) U NatInterval(n #+ k,m)"
using assms add_assoc length_start_decomp by auto

end

5 Order relations - introduction
theory Order_ZF imports Foll
begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions

In this section we formulate the definitions related to order relations.
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A relation 7 is "total” on a set X if for all elements a,b of X we have a is
in relation with b or b is in relation with a. An example is the < relation on
numbers.

definition
IsTotal (infixl "{is total on}" 65) where
"r {is total on} X = (VaeX.VbeX. ( a,b) € r V ( b,a) € r)"

A relation r is a partial order on X if it is reflexive on X (i.e. (z,x) for
every x € X), antisymmetric (if (z,y) € r and (y,x) € r, then = = y) and
transitive (x,y) € r and (y, z) € r implies (x, z) € 7).

definition

"IsPartOrder(X,r) = (refl(X,r) A antisym(r) A trans(r))"

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition

"IsLinOrder(X,r) = ( antisym(r) A trans(r) A (r {is total on} X))"

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that (z,u) € r for all z € A. In addition, the empty set is
defined as bounded.

definition
"IsBoundedAbove(A,r) = ( A=0 V (Ju. Vx€A. ( x,u) € r))"

We define sets bounded below analogously.

definition
"IsBoundedBelow(A,r) = (A=0 V (1. Vxe€A. ( 1,x) € r))"

A set is bounded if it is bounded below and above.

definition
"IsBounded(A,r) = (IsBoundedAbove(A,r) A IsBoundedBelow(A,r))"

The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_zF_2_L1 for more intuitive notation.

definition
"Interval(r,a,b) = r<‘{a} N r-“{p}"

We also define the maximum (the greater of) two elemnts in the obvious
way.

definition
"GreaterOf(r,a,b) = (if ( a,b) € r then b else a)"

The definition a a minimum (the smaller of) two elements.

definition
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"Smaller0f(r,a,b) = (if ( a,b) € r then a else b)"

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
"HasAmaximum(r,A) = IMeA.Vx€A. ( x,M) € r"
A similar definition what it means that a set has a minimum.
definition
"HasAminimum(r,A) = Im€A.Vx€A. ( m,x) € "
Definition of the maximum of a set.
definition
"Maximum(r,A) = THE M. MeA A (Vxe€A. ( x,M) € )"
Definition of a minimum of a set.
definition

"Minimum(r,A) = THE m. m€A A (Vx€A. (m,x) € )"

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.Vqea(a,u) € r} = (,car{a}. Recall that in Is-
abelle/ZF r-¢¢(a) denotes the inverse image of the set A by relation r (i.e.
r- (W) ={x: (z,y) € r for some y € A}).

definition
"Supremum(r,A) = Minimum(r,()acA. r‘‘{a})"

Infimum is defined analogously.
definition
"Infimum(r,A) = Maximum(r,()achA. r-‘‘{a})"
We define a relation to be complete if every nonempty bounded above set

has a supremum.

definition
IsComplete ("_ {is complete}") where
"r {is complete} =
VA. IsBoundedAbove(A,r) A A#0 — HasAminimum(r,()acA. r‘‘{a})"

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes "r {is total on} X" and "aeX"
shows "(a,a) € r" using assms IsTotal_def by auto

A total relation is reflexive.

lemma total_is_refl:
assumes "r {is total on} X"
shows "refl(X,r)" using assms Order_ZF_1_L1 refl_def by simp
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A linear order is partial order.

lemma Order_ZF_1_L2: assumes "IsLinOrder(X,r)"
shows "IsPartOrder(X,r)"
using assms IsLinOrder_def IsPartOrder_def refl_def Order_ZF_1_L1
by auto

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes "IsPartOrder(X,r)" and "r {is total on} X"
shows "IsLinOrder(X,r)"
using assms IsPartOrder_def IsLinOrder_def
by simp

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes "r {is total on} X" and "ACX"
shows "r {is total on} A"
using assms IsTotal_def by auto

A linear relation is linear on any subset.

lemma ord_linear_subset: assumes "IsLinOrder(X,r)" and "ACX"
shows "IsLinOrder(A,r)"
using assms IsLinOrder_def Order_ZF_1_L4 by blast

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:
assumes "r {is total on} X" and "ACX" and "acX"
shows "A = {x€A. (x,a) € r} U {x€A. (a,x) € r}"
using assms IsTotal_def by auto

A technical fact about reflexive relations.

lemma refl_add_point:
assumes "refl(X,r)" and "A C B U {x}" and "B C X" and
"x € X" and "VyeB. (y,x) € r"
shows "Va€A. (a,x) € r"
using assms refl_def by auto

5.2 Intervals
In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows "x € Interval(r,a,b) <— ( a,x) € r A { x,b) € "
using Interval_def by auto
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Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_zF_2_L1
into two lemmas.

lemma Order_ZF_2_L1A: assumes "x € Interval(r,a,b)"
shows "( a,x) € r" "( x,b) € r"
using assms Order_ZF_2_L1 by auto

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes "( a,x) € r" "( x,b) € r"
shows "x € Interval(r,a,b)"
using assms Order_ZF_2_L1 by simp

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes "refl(X,r)"
and "aceXx" "beX" and "( a,b) € r"
shows
"a € Interval(r,a,b)"
"b € Interval(r,a,b)"
using assms refl_def Order_ZF_2_L1 by auto

Under the assumptions of Order_zF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes "refl(X,r)"
and "aeX" "beX" and "( a,b) € r"
shows "Interval(r,a,b) # 0"
proof -
from assms have "a € Interval(r,a,b)"
using Order_ZF_2_L2 by simp
then show "Interval(r,a,b) # 0" by auto
qed

If a,b,c,d are in this order, then [b,c] C [a,d]. We only need trasitivity for
this to be true.

lemma Order_ZF_2_L3:
assumes Al: "trans(r)" and A2:"( a,b)er" "( b,c)er" "( c,d)er"
shows "Interval(r,b,c) C Interval(r,a,d)"
proof
fix x assume A3: "x € Interval(r, b, c)"
note Al
moreover from A2 A3 have "( a,b) € r A ( b,x) € r" using Order_ZF_2_L1A
by simp
ultimately have Ti: "( a,x) € r" by (rule Foll_L3)
note Al
moreover from A2 A3 have "( x,¢) € r A ( ¢,d) € r" using Order_ZF_2_L1A
by simp
ultimately have "( x,d) € r" by (rule Foll_L3)
with T1 show "x € Interval(r,a,d)" using Order_ZF_2_L1B
by simp
qed
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For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_L4:
assumes Al: "refl(X,r)" and A2: "antisym(r)" and A3: "acX"
shows "Interval(r,a,a) = {a}"
proof
from A1l A3 have "( a,a) € r" using refl_def by simp
with A1 A3 show "{a} C Interval(r,a,a)" using Order_ZF_2_L2 by simp
from A2 show "Interval(r,a,a) C {a}" using Order_ZF_2_L1A Foll_L4
by fast
qed

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes Al: "trans(r)" and A2: "( a,b) ¢ r"
shows "Interval(r,a,b) = O"
proof -
{ assume "Interval(r,a,b)#0" then obtain x where "x € Interval(r,a,b)"
by auto
with A1 A2 have False using Order_ZF_2_L1A Foll_L3 by fast
} thus ?thesis by auto
qed

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes Al: "r C XxX"
shows "Interval(r,a,b) C X"
using assms Interval_def by auto

5.3 Bounded sets
In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes "refl(X,r)" and "acX"
shows "IsBounded({a},r)"
using assms refl_def IsBoundedAbove_def IsBoundedBelow_def
IsBounded_def by auto

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes "r C XxX"
and "IsBoundedAbove(A,r)"
shows "ACX" using assms IsBoundedAbove_def by auto

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes "r C XxX"
and "IsBoundedBelow(A,r)"
shows "ACX" using assms IsBoundedBelow_def by auto
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For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes "r {is total on} X"
and "xeX" "yeXx"
shows
"(x,Greater0f (r,x,y)) € r
"(y,Greater0f(r,x,y)) € r
"(SmallerOf(r,x,y),x) € r
"(Smaller0f(r,x,y),y) € T
using assms IsTotal_def Order_ZF_1_L1 GreaterOf_def Smaller0f_def
by auto

If A is bounded above by u, B is bounded above by w, then AUB is bounded
above by the greater of u, w.

lemma Order_ZF_3_L2B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ueX" "weX"
and A4: "VxeA. ( x,u) € r" "VxeB. ( x,w) € r"
shows "Vx€AUB. (x,Greater0f(r,u,w)) € r"
proof
let ?v = "GreaterOf(r,u,w)"
from A1 A3 have Ti: "( u,?v) € r" and T2: "( w,?v) € r"
using Order_ZF_3_L2 by auto
fix x assume A5: "x€AUB" show "(x,7v) € r"
proof -
{ assume "x€A"
with A4 T1 have "( x,u) € r A ( u,?v) € r" by simp
with A2 have "(x,?v) € r" by (rule Foll_L3) }
moreover
{ assume "x¢A"
with A5 A4 T2 have "( x,w) € r A ( w,?v) € r" by simp
with A2 have "(x,?v) € r" by (rule Foll_L3) }
ultimately show 7thesis by auto
qed
qed

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedAbove(A,r)" "IsBoundedAbove(B,r)"
and A4: "r C XxX"
shows "IsBoundedAbove(AUB,r)"
proof -
{ assume "A=0 V B=0"
with A3 have "IsBoundedAbove(AUB,r)" by auto }
moreover
{ assume "= (A =0V B=0)"
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then have T1: "A#0" "B#£0" by auto
with A3 obtain u w where D1: "Vxe€A. ( x,u) € r" "VxeB.

using IsBoundedAbove_def by auto
let ?U = "GreaterOf(r,u,w)"
from T1 A4 D1 have "ueX" "weX" by auto
with A1 A2 D1 have "Vx€AUB.( x,7U) € r"
using Order_ZF_3_L2B by blast
then have "IsBoundedAbove(AUB,r)"
using IsBoundedAbove_def by auto }

ultimately show ?7thesis by auto

qed

( x,w) €

For total and transitive relations if a set A is bounded above then AU {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedAbove(A,r)" and A4: "acX" and A5: "r C XxX"
shows "IsBoundedAbove(AU{a},r)"
proof -
from Al have "refl(X,r)"

using total_is_refl by simp

with assms show ?7thesis using

qed

Order_ZF_3_L1 IsBounded_def Order_ZF_3_L3 by simp

If A is bounded below by I, B is bounded below by m, then AU B is bounded
below by the smaller of u, w.

lemma Order_ZF_3_L5B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "1€X" "meX"
and A4: "Vxe€A. ( 1,x) € r" "VxeB. (m,x) € r"
shows "Vx€AUB. (SmallerOf(r,l,m),x) € r"
proof
let 7k = "SmallerOf(r,1,m)"
from A1 A3 have T1: "( 7k,1) € r" and T2: "( 7k,m) € r"

using Order_ZF_3_L2 by auto

fix x assume A5: "x€AUB" show "(7k,x) € r"
proof -

{ assume "xeA"
with A4 T1 have "( 7k,1) € r A ( 1,x) € r" by simp
with A2 have "(7k,x) € r" by (rule Foll_L3) }
moreover
{ assume "x¢A"
with A5 A4 T2 have "( 7k,m) € r A ( m,x) € r" by simp
with A2 have "(7k,x) € r" by (rule Foll_L3) }
ultimately show 7thesis by auto

qed

qed
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For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedBelow(A,r)" "IsBoundedBelow(B,r)"
and A4: "r C XxX"
shows "IsBoundedBelow(AUB,r)"
proof -
{ assume "A=0 V B=0"
with A3 have 7thesis by auto }
moreover
{ assume "= (A =0V B=0)"
then have T1: "A#0" "B#0" by auto
with A3 obtain 1 m where D1: "Vxe€A. ( 1,x) € r" "VxeB. ( m,x) €

using IsBoundedBelow_def by auto

let ?L = "SmallerOf(r,1,m)"

from T1 A4 D1 have T1: "le€X" "meX" by auto

with A1 A2 D1 have "Vx€AUB.( ?7L,x) € r"
using Order_ZF_3_L5B by blast

then have "IsBoundedBelow(AUB,r)"
using IsBoundedBelow_def by auto }

ultimately show 7thesis by auto
qed

For total and transitive relations if a set A is bounded below then A U {a}
is bounded below.

lemma Order_ZF_3_L7:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedBelow(A,r)" and A4: "acX" and A5: "r C XxX"
shows "IsBoundedBelow(AU{al},r)"
proof -
from A1 have "refl(X,r)"
using total_is_refl by simp
with assms show ?thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L6 by simp
qed

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes "r {is total on} X" and "trans(r)"
and "IsBounded(A,r)" "IsBounded(B,r)"
and "r C XxX"
shows "IsBounded(AUB,r)"
using assms Order_ZF_3_L3 Order_ZF_3_L6 Order_ZF_3_L7 IsBounded_def
by simp

For total and transitive relations if a set A is bounded then A U {a} is
bounded.
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lemma Order_ZF_3_L8:
assumes "r {is total on} X" and "trans(r)"
and "IsBounded(A,r)" and "acX" and "r C XxX"
shows "IsBounded(AU{a},r)"
using assms total_is_refl Order_ZF_3_L1 Order_ZF_3_T1 by blast

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes Al: "VacA. (l,a) € r"
shows "IsBoundedBelow(A,r)"
proof -
from A1 have "J1. VxeA. (1,x) € r"
by auto
then show "IsBoundedBelow(A,r)"
using IsBoundedBelow_def by simp
qed

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes Al: "VacA. (a,u) € r"
shows "IsBoundedAbove(A,r)"
proof -
from A1 have "Ju. Vxe€A. (x,u) € r"
by auto
then show "IsBoundedAbove(A,r)"
using IsBoundedAbove_def by simp
qed

Intervals are bounded.

lemma Order_ZF_3_L11: shows
"IsBoundedAbove (Interval(r,a,b),r)"
"IsBoundedBelow(Interval(r,a,b),r)"
"IsBounded(Interval(r,a,b),r)"
proof -
{ fix x assume "x € Interval(r,a,b)"
then have "( x,b) € r" "( a,x) € "
using Order_ZF_2_L1A by auto
} then have
"Ju. Vx€Interval(r,a,b). ( x,u)
"J1. Vx€Interval(r,a,b). { 1,x)
by auto
then show
"IsBoundedAbove(Interval(r,a,b),r)"
"IsBoundedBelow(Interval(r,a,b),r)"
"IsBounded(Interval(r,a,b),r)"
using IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto
qed

cr
cr

A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes Al: "IsBoundedBelow(A,r)" and A2:
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shows "IsBoundedBelow(B,r)"
proof -
{ assume "A = O"
with assms have "IsBoundedBelow(B,r)"
using IsBoundedBelow_def by auto }
moreover
{ assume "A # O"
with A1 have "J1. VxeA. (1,x) € r"
using IsBoundedBelow_def by simp
with A2 have "31.Vx€B. (1,x) € r" by auto
then have "IsBoundedBelow(B,r)" using IsBoundedBelow_def
by auto }
ultimately show "IsBoundedBelow(B,r)" by auto
qed

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes Al: "IsBoundedAbove(A,r)" and A2:

shows "IsBoundedAbove(B,r)"
proof -
{ assume "A = O"
with assms have "IsBoundedAbove(B,r)"
using IsBoundedAbove_def by auto }
moreover
{ assume "A # 0"
with A1 have "Ju. Vx€A. (x,u) € r"
using IsBoundedAbove_def by simp
with A2 have "Ju.VxeB. (x,u) € r" by auto
then have "IsBoundedAbove(B,r)" using IsBoundedAbove_def
by auto }
ultimately show "IsBoundedAbove(B,r)" by auto
qed

IIBgAII

If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and

antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:
assumes Al: "r {is total on} X"
and A2: "trans(r)" and A3: "antisym(r)"
and A4d: "r C XxX" and A5: "X#0"
and A6: "Vxe€X. JacA. x#a A (x,a) € r"
shows "—IsBoundedAbove(A,r)"
proof -
{ from A5 A6 have I: "A#0" by auto
moreover assume "IsBoundedAbove(A,r)"
ultimately obtain u where II: "Vx€A. ( x,u) € r"
using IsBounded_def IsBoundedAbove_def by auto
with A4 I have "ueX" by auto
with A6 obtain b where "beA" and III: "u#b" and "(u,b) € r"
by auto
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with II have "(b,u) € r" "(u,b) € r" by auto
with A3 have "b=u" by (rule Foll_L4)
with IIT have False by simp
} thus "—IsBoundedAbove(A,r)" by auto
qed

The set of elements in a set A that are nongreater than a given element is
bounded above.

lemma Order_ZF_3_L15: shows "IsBoundedAbove({x€A. (x,a) € r},r)"
using IsBoundedAbove_def by auto

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes Al: "IsBoundedBelow(A,r)"
shows "IsBounded({x€A. (x,a) € r},r)"
proof -
{ assume "A=0"
then have "IsBounded({x€A. (x,a) € r},r)"
using IsBoundedBelow_def IsBoundedAbove_def IsBounded_def
by auto }
moreover
{ assume "A#0"
with Al obtain 1 where I: "Vx€A. (1,x) € r"
using IsBoundedBelow_def by auto
then have "Vye{xeA. (x,a) € r}. (1,y) € r" by simp
then have "IsBoundedBelow({x€A. (x,a) € r},r)"
by (rule Order_ZF_3_L9)
then have "IsBounded({x€A. (x,a) € r},r)"
using Order_ZF_3_L15 IsBounded_def by simp }
ultimately show 7thesis by blast
qed

end

6 More on order relations

theory Order_ZF_1 imports Order ZF1
begin

In Order_ZzF we define some notions related to order relations based on the
nonstrict orders (< type). Some people however prefer to talk about these
notions in terms of the strict order relation (< type). This is the case for the
standard Isabelle Order.thy and also for Metamath. In this theory file we
repeat some developments from Order_ZF using the strict order relation as
a basis. This is mostly useful for Metamath translation, but is also of some
general interest. The names of theorems are copied from Metamath.
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6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and
relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write
as R Orders A is written ROrdA in Metamath.

definition

StrictOrder (infix "Orders" 65) where
"R Orders A = Vx y z. (x€A A yeA A z€d) —
((x,y) € R +— —(x=y V (y,x) € R)) A
({(x,y) € R A {y,z) € R — (x,z) € R)"

The definition of supremum for a (strict) linear order.

definition
"Sup(B,A,R) =
U {x € A. (VyeB. (x,y) ¢ R) A
(Vyeh. (y,x) € R — (3z€B. (y,z) € R))}"

Definition of infimum for a linear order. It is defined in terms of supremum.

definition
"Infim(B,A,R) = Sup(B,A,converse(R))"

If relation R orders a set A, (in Metamath sense) then R is irreflexive,
transitive and linear therefore is a total order on A (in Isabelle sense).

lemma orders_imp_tot_ord: assumes Al: "R Orders A"
shows
"irrefl(A,R)"
"trans[A] (R)"
"part_ord(A,R)"
"linear(A,R)"
"tot_ord(A,R)"
proof -
from A1 have I:
"Wx y z. (x€EA A yEA N z€A) —
({x,y) € R +— ~(x=y V (y,x) € R)) A
({x,y) € R A (y,2) € R — (x,2) € R)"
unfolding StrictOrder_def by simp
then have "VxeA. (x,x) ¢ R" by blast
then show "irrefl(A,R)" using irrefl_def by simp
moreover
from I have
"WxeA. VyeA. VzeA. (x,y) € R — (y,z) € R — (x,z) € R"
by blast
then show "trans[A] (R)" unfolding trans_on_def by blast
ultimately show "part_ord(A,R)" using part_ord_def
by simp
moreover
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from I have
"WxeA. Vyeh. (x,y) € R V x=y V (y,x) € R"
by blast
then show "linear(A,R)" unfolding linear_def by blast
ultimately show "tot_ord(A,R)" using tot_ord_def
by simp
qed

A converse of orders_imp_tot_ord. Together with that theorem this shows
that Metamath’s notion of an order relation is equivalent to Isabelles tot_ord
predicate.

lemma tot_ord_imp_orders: assumes Al: "tot_ord(A,R)"
shows "R Orders A"
proof -
from A1 have
I: "linear(A,R)" and
II: "irrefl(A,R)" and
III: "trans[A](R)" and
IV: "part_ord(A,R)"
using tot_ord_def part_ord_def by auto
from IV have "asym(R N AxA)"
using part_ord_Imp_asym by simp
then have V: "Vx y. (x,y) € (R N AxA) — —=({y,x) € (R N AxA))"
unfolding asym_def by blast
from I have VI: "VxeA. VyeA. (x,y) € R V x=y V (y,x) € R"
unfolding linear_def by blast
from III have VII:
"WxeA. VyeA. VzeA. (x,y) € R — (y,z2) € R — (x,z) € R"
unfolding trans_on_def by blast
{fixxyz
assume T: "xcA" "ycA" "zeA"
have "(x,y) € R +— —(x=y V (y,x) € R)"
proof
assume A2: "(x,y) € R"
with V T have "-((y,x) € R)" by blast
moreover from II T A2 have "x#y" using irrefl_def
by auto
ultimately show "—(x=y V (y,x) € R)" by simp
next assume "-(x=y V (y,x) € R)"
with VI T show "(x,y) € R" by auto
qed
moreover from VII T have
"(x,y) € R A (y,z) € R — (x,z) € R"
by blast
ultimately have "({x,y) € R +— —(x=y V (y,x) € R)) A
((x,y) € R A (y,2) € R — (x,z) € R)"
by simp
} then have "Vx y z. (x€A A yEA A z€A) —»
({x,y) € R +— —(x=y V (y,x) € R)) A
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({x,y) € R A (y,z) € R — (x,2) € R)"
by auto
then show "R Orders A" using StrictOrder_def by simp
qed

6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This con-
tinues the development contained in the standard Isabelle’s Order.thy with
a view towards using the theorems translated from Metamath.

A relation orders a set iff the converse relation orders a set. Going one
way we can use the the lemma tot_od_converse from the standard Isabelle’s
Order.thy.The other way is a bit more complicated (note that in Isabelle for
converse(converse(r)) = r one needs r to consist of ordered pairs, which
does not follow from the StrictOrder definition above).

lemma cnvso: shows "R Orders A <— converse(R) Orders A"
proof
let ?r = "converse(R)"
assume "R Orders A"
then have "tot_ord(A,?r)" using orders_imp_tot_ord tot_ord_converse

by simp
then show "7r Orders A" using tot_ord_imp_orders
by simp
next
let ?r = "converse(R)"

assume "7?r Orders A"
then have A2: "Vx y z. (x€A A yeA A z€h) —
(x,y) € 7t +— —(x=y V (y,x) € 7r)) A
(x,y) € 7r A (y,2z) € 7r — (x,z) € )"
using StrictOrder_def by simp
{fixxyz
assume "xcA A ycA A zeA"
with A2 have
I: "(y,x) € ?r «— —(x=y V (x,y) € 7r)" and
II: "(y,x) € 7r A (z,y) € 7r — (z,x) € 7r"

by auto

from I have "(x,y) € R +— —(x=y V (y,x) € R)"
by auto

moreover from II have "(x,y) € R A (y,z) € R — (x,2z) € R"
by auto

ultimately have "({x,y) € R +— —(x=y V (y,%x) € R)) A
((x,y) € R A {y,z) € R — (x,2) € R)" by simp
} then have "Vx y z. (x€A A yEA A z€A) —
({(x,y) € R «— —(x=y V (y,%x) € R)) A
({x,y) € R A (y,z) € R — (x,2) € R)"
by auto
then show "R Orders A" using StrictOrder_def by simp
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qed

Supremum is unique, if it exists.

lemma supeu: assumes Al: "R Orders A" and A2: "x€A" and
A3: "VyeB. (x,y) ¢ R" and A4: "Vye€A. (y,x) € R — ( 3z€B. (y,z) €
R)"
shows
"Jix. xeAA(VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( 3z€B. (y,z) €
R)"
proof
from A2 A3 A4 show
"3 x. x€AAN(VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( Jz€B. (y,z)
€ RrRN"
by auto
next fix x; xo
assume A5:
"x; € A A (VyeB. (x1,y) ¢ R A (Vy€eA. (y,x1) € R — ( 3z€B. (y,z)
c R))n
"xo € A A (VyeB. (x2,y) ¢ R) A (Vy€A. (y,x2) € R — ( Jz€B. (y,z)
€ RD"
from Al have "linear(A,R)" using orders_imp_tot_ord tot_ord_def
by simp
then have "VxeA. VyeA. (x,y) € RV x=y V (y,x) € R"
unfolding linear_def by blast
with A5 have "(x1,x2) € R V x1=x2 V (x2,%1) € R" by blast
moreover
{ assume "(x;,x3) € R"
with A5 obtain z where "z€B" and "(x;,z) € R" by auto
with A5 have False by auto }
moreover
{ assume "(x5,x;) € R"
with A5 obtain z where "zeB" and "(x2,z) € R" by auto
with A5 have False by auto }
ultimately show "x; = x3" by auto
qed

Supremum has expected properties if it exists.

lemma sup_props: assumes Al: "R Orders A" and

A2: "JIxeA. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( 3z€B. (y,z)
€ RrRD"

shows

"Sup(B,A,R) € A"

"WyeB. (Sup(B,A,R),y) ¢ R"

"WyeA. (y,Sup(B,A,R)) € R — ( 3z€B. (y,z) € R )"
proof -

let 78 = "{xc€A. (VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( JzeB. (y,z)
€R)) I

from A2 obtain x where

"xeA" and "(VyeB. (x,y) ¢ R)" and "Vye€A. (y,x) € R — ( Iz€B.
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(y,z) € R)"
by auto
with A1 have I:
"J1x. x€AAN(VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( Jz€B. (y,z)
c R))n
using supeu by simp
then have "( 7S ) € A" by (rule ZF1_1_L9)
then show "Sup(B,A,R) € A" using Sup_def by simp
from I have II:
"(VyeB. (U?S ,y) ¢ R) A (VyeA. (y,UU?S) € R — ( Jz€B. (y,z) €
R
by (rule ZF1_1_19)
hence "VyeB. (J7S,y) ¢ R" by blast
moreover have III: "(|J?S) = Sup(B,A,R)" using Sup_def by simp
ultimately show "VyeB. (Sup(B,A,R),y) ¢ R" by simp
from II have IV: "VyeA. (y,lU?S) € R — ( Jz€B. (y,z) € R)"
by blast
{ fix y assume A3: "yeA" and "(y,Sup(B,A,R)) € R"
with III have "(y,J?S) € R" by simp
with IV A3 have "Jz€B. (y,z) € R" by blast
} thus "VyeA. (y,Sup(B,A,R)) € R — ( Jz€B. (y,z) € R )"
by simp
qed

Elements greater or equal than any element of B are greater or equal than
supremum of B.

lemma supnub: assumes Al: "R Orders A" and A2:
"Ixeh. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( 3z€B. (y,z) € R))"
and A3: "c € A" and A4: "VzeB. (c,z) ¢ R"
shows "(c, Sup(B,A,R)) ¢ R"
proof -
from A1 A2 have
"VyeA. (y,Sup(B,A,R)) € R — ( Jz€B. (y,z) € R )"
by (rule sup_props)
with A3 A4 show "(c, Sup(B,A,R)) ¢ R" by auto
qed

end

7 Even more on order relations
theory Order_ZF_la imports Order_ZF
begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.
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7.1 DMaximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes Al: "antisym(r)" and A2: "HasAmaximum(r,A)"
shows "JIM. MeA A (VxeA. ( x,M) € )"
proof
from A2 show "IM. M € A A (Vx€A. (x, M) € )"
using HasAmaximum_def by auto
fix M1 M2 assume
A2: "M1 € A A (VxEA. (x, ML) € r)" "M2 € A A (Vx€A. (x, M2) € )"
then have "(M1,M2) € r" "(M2,M1) € r" by auto
with A1 show "M1=M2" by (rule Foll_L4)
qed

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes Al: "antisym(r)" and A2: "HasAminimum(r,A)"
shows "J!'m. meA A (Vx€A. ( m,x) € )"
proof
from A2 show "dm. m € A A (Vx€A. (m, x) € )"
using HasAminimum_def by auto
fix m1 m2 assume
A2: "ml € A A (Vx€A. (m1, x) € r)" "m2 € A A (Vx€A. (m2, x) € )"
then have "(m1,m2) € r" "(m2,m1) € r" by auto
with A1 show "m1=m2" by (rule Foll_L4)
qed

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes Al: "antisym(r)" and A2: "HasAmaximum(r,A)"
shows "Maximum(r,A) € A" "Vx€A. (x,Maximum(r,A)) € r"
proof -
let ?Max = "THE M. MeA A (Vxe€A. ( x,M) € )"
from A1 A2 have "J!M. MeA A (Vx€A. ( x,M) € )"
by (rule Order_ZF_4_L1)
then have "?Max € A A (Vx€A. ( x,7Max) € r)"
by (rule thel)
then show "Maximum(r,A) € A" "Vx€A. (x,Maximum(r,A)) € r"
using Maximum_def by auto
qed

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes Al: "antisym(r)" and A2: "HasAminimum(r,A)"
shows "Minimum(r,A) € A" "Vx€A. (Minimum(r,A),x) € r"
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proof -
let ?Min = "THE m. m€A A (Vx€A. ( m,x) € T)"
from A1 A2 have "I !m. meA A (Vx€A. (m,x) € )"
by (rule Order_ZF_4_L2)
then have "?Min € A A (Vx€A. ( ?Min,x) € r)"
by (rule thel)
then show "Minimum(r,A) € A" "Vx€A. (Minimum(r,A),x) € r"
using Minimum_def by auto
qed

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:
assumes Al: "r {is total on} (AUB)" and A2: "trans(r)"
and A3: "HasAmaximum(r,A)" "HasAmaximum(r,B)"
shows "HasAmaximum(r,AUB)"
proof -
from A3 obtain M K where
D1: "MeA A (Vxe€A. ( x,M) € r)" "KeB A (Vx€B. ( x,K) € r)"
using HasAmaximum_def by auto
let ?L = "GreaterOf(r,M,K)"
from D1 have T1: "M € AUB" "K € AUB"
"WxeA. ( x,M) € r" "Vxe€B. ( x,K) € r"
by auto
with A1 A2 have "Vx€AUB.( x,?L) € r" by (rule Order_ZF_3_L2B)
moreover from T1 have "?L € AUB" using GreaterOf_def IsTotal_def
by simp
ultimately show "HasAmaximum(r,AUB)" using HasAmaximum_def by auto
qed

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_L6:
assumes Al: "r {is total on} (AUB)" and A2: "trans(r)"
and A3: "HasAminimum(r,A)" "HasAminimum(r,B)"
shows "HasAminimum(r,AUB)"
proof -
from A3 obtain m k where
D1: "meA A (Vx€A. ( m,x) € r)" "k€B A (Vx€B. ( k,x) € )"
using HasAminimum_def by auto
let 71 = "SmallerOf(r,m,k)"
from D1 have T1: "m € AUB" "k € AUB"
"Wx€A. ( m,x) € r" "VxeB. ( k,x) € "
by auto
with A1 A2 have "Vx€AUB.( 71,x) € r" by (rule Order_ZF_3_L5B)
moreover from T1 have "?1 € AUB" using Smaller0f_def IsTotal_def
by simp
ultimately show "HasAminimum(r,AUB)" using HasAminimum_def by auto
qed
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Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes "HasAmaximum(r,A)"
shows "IsBoundedAbove(A,r)"
using assms HasAmaximum_def IsBoundedAbove_def by auto

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes "HasAminimum(r,A)"
shows "IsBoundedBelow(A,r)"
using assms HasAminimum_def IsBoundedBelow_def by auto

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_18: assumes "refl(X,r)" and "aeX"
shows "HasAmaximum(r,{a})" "HasAminimum(r,{a})"
using assms refl_def HasAmaximum_def HasAminimum_def by auto

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ACX" and A4: "acX" and A5: "HasAmaximum(r,A)"
shows "HasAmaximum(r,AU{a})"
proof -
from A3 A4 have "AU{a} C X" by auto
with A1 have "r {is total on} (AU{a})"
using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
"trans(r)" "HasAmaximum(r,A)" by auto
moreover from Al A4 have "HasAmaximum(r,{a})"
using total_is_refl Order_ZF_4_L8 by blast
ultimately show "HasAmaximum(r,AU{a})" by (rule Order_ZF_4_L5)
qed

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ACX" and A4: "acX" and A5: "HasAminimum(r,A)"
shows "HasAminimum(r,AU{a})"
proof -
from A3 A4 have "AU{a} C X" by auto
with A1 have "r {is total on} (AU{a})"
using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
"trans(r)" "HasAminimum(r,A)" by auto
moreover from Al A4 have "HasAminimum(r,{a})"
using total_is_refl Order_ZF_4_L8 by blast
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ultimately show "HasAminimum(r,AU{a})" by (rule Order_ZF_4_L6)
qed

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes Al: "r {is total on} X" and
A2: "trans(r)" and
A3: "r C XxX" and
Ad: "VA. IsBounded(A,r) A A#0 — HasAminimum(r,A)" and
A5: "B#0" and A6: "IsBoundedBelow(B,r)"
shows "HasAminimum(r,B)"
proof -
from A5 obtain b where T: "beB" by auto
let 7L = "{x€B. (x,b) € r}"
from A3 A6 T have T1: "beX" using Order_ZF_3_L1B by blast
with A1 T have T2: "b € 7L"
using total_is_refl refl_def by simp
then have "7L # 0" by auto
moreover have "IsBounded(?7L,r)"
proof -
have "?L C B" by auto
with A6 have "IsBoundedBelow(?L,r)"
using Order_ZF_3_L12 by simp
moreover have "IsBoundedAbove(?L,r)"
by (rule Order_ZF_3_L15)
ultimately have "IsBoundedAbove(?L,r) A IsBoundedBelow(?L,r)"
by blast
then show "IsBounded(?L,r)" using IsBounded_def
by simp
qed
ultimately have "IsBounded(?7L,r) A 7L # 0" by blast
with A4 have "HasAminimum(r,?L)" by simp
then obtain m where I: "me?L" and II: "Vx€?L. ( m,x) € r"
using HasAminimum_def by auto
then have III: "(m,b) € r" by simp
from I have "meB" by simp
moreover have "Vxe€B. (m,x) € r"
proof
fix x assume A7: "x€B"
from A3 A6 have "BCX" using Order_ZF_3_L1B by blast
with A1 A7 T1 have "x € 7L U {x€B. (b,x) € r}"
using Order_ZF_1_L5 by simp
then have "x€?L V (b,x) € r" by auto
moreover
{ assume "xe€?7L"
with II have "(m,x) € r" by simp }
moreover
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{ assume "(b,x) € r"
with A2 III have "trans(r)" and "(m,b) € r A (b,x) € r"
by auto
then have "(m,x) € r" by (rule Foll_L3) }
ultimately show "(m,x) € r" by auto
qed
ultimately show "HasAminimum(r,B)" using HasAminimum_def
by auto
qed

A dual to Order_zZF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes Al: "r {is total on} X" and
A2: "trans(r)" and
A3: "r C XxX" and
A4: "VA. IsBounded(A,r) A A#0 — HasAmaximum(r,A)" and
A5: "B#0" and A6: "IsBoundedAbove(B,r)"
shows "HasAmaximum(r,B)"
proof -
from A5 obtain b where T: "beB" by auto
let ?7U = "{x€B. (b,x) € r}"
from A3 A6 T have T1: "beX" using Order_ZF_3_L1A by blast
with A1 T have T2: "b € 7U"
using total_is_refl refl_def by simp
then have "?U # 0" by auto
moreover have "IsBounded(?U,r)"
proof -
have "?U0 C B" by auto
with A6 have "IsBoundedAbove(?U,r)"
using Order_ZF_3_L13 by blast
moreover have "IsBoundedBelow(?U,r)"
using IsBoundedBelow_def by auto
ultimately have "IsBoundedAbove(?U,r) A IsBoundedBelow(?7U,r)"
by blast
then show "IsBounded(?U,r)" using IsBounded_def
by simp
qed
ultimately have "IsBounded(?U,r) A ?U # 0" by blast
with A4 have "HasAmaximum(r,?U)" by simp
then obtain m where I: "me?U" and II: "Vx€?U. (x,m) € r"
using HasAmaximum_def by auto
then have III: "(b,m) € r" by simp
from I have "me€B" by simp
moreover have "VxeB. (x,m) € r"
proof
fix x assume A7: "xeB"
from A3 A6 have "BCX" using Order_ZF_3_L1A by blast
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with A1 A7 T1 have "x € {x€B. (x,b) € r} U 7U"
using Order_ZF_1_L5 by simp
then have "x€?U V (x,b) € r" by auto
moreover
{ assume "xe€?7U"
with II have "(x,m) € r" by simp }
moreover
{ assume "(x,b) € r"
with A2 III have "trans(r)" and "(x,b) € r A (b,m) € "
by auto
then have "(x,m) € r" by (rule Foll_L3) }
ultimately show "(x,m) € r" by auto
qed
ultimately show "HasAmaximum(r,B)" using HasAmaximum_def
by auto
qed

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes "antisym(r)" and "HasAminimum(r,A)" and "VacA. (L,a) € r"
shows "(L,Minimum(r,A)) € r"
using assms Order_ZF_4_L4 by simp

If a set has a maximum and all its elements are less or equal than M, then
the maximum of the set is less or equal than M.

lemma Order_ZF_4_L13:
assumes "antisym(r)" and "HasAmaximum(r,A)" and "VacA. (a,M) € r"
shows "(Maximum(r,A),M) € r"
using assms Order_ZF_4_L3 by simp

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
assumes Al: "antisym(r)" and A2: "M € A" and
A3: "VacA. (a,M) € r"
shows "Maximum(r,A) = M"
proof -
from A2 A3 have I: "HasAmaximum(r,A)" using HasAmaximum_def
by auto
with A1 have "J!M. MeA A (Vx€A. (x,M) € )"
using Order_ZF_4_L1 by simp
moreover from A2 A3 have "MeA A (VxeA. (x,M) € r)" by simp
moreover from A1 I have
"Maximum(r,A) € A A (Vx€A. (x,Maximum(r,A)) € )"
using Order_ZF_4_L3 by simp
ultimately show "Maximum(r,A) = M" by auto
qed
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If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:
assumes Al: "antisym(r)" and A2: "m € A" and
A3: "Va€cA. (m,a) € r"
shows "Minimum(r,A) = m"
proof -
from A2 A3 have I: "HasAminimum(r,A)" using HasAminimum_def
by auto
with A1 have "J!'m. meA A (Vx€A. (m,x) € )"
using Order_ZF_4_L2 by simp
moreover from A2 A3 have "meA A (Vx€A. (m,x) € r)" by simp
moreover from Al I have
"Minimum(r,A) € A A (Vx€A. (Minimum(r,A),x) € )"
using Order_ZF_4_L4 by simp
ultimately show "Minimum(r,A) = m" by auto
qed

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:
assumes Al: "antisym(r)" and A2: "r {is total on} X" and
A3: "ACX" and
A4: "—HasAmaximum(r,A)" and

A5: "xeA"
shows "JyeA. (x,y) € r A y#x"
proof -

{ assume A6: "VycA. (x,y) ¢ r V y=x"
have "VyeA. (y,x) € r"
proof
fix y assume A7: "ycA"
with A6 have "(x,y) ¢ r V y=x" by simp
with A2 A3 A5 A7 show "(y,x) € r"
using IsTotal_def Order_ZF_1_L1 by auto
qed
with A5 have "JxcA.VyeA. (y,x) € r"
by auto
with A4 have False using HasAmaximum_def by simp
} then show "JyeA. (x,y) € r A y#x" by auto
qed

7.2 Supremum and Infimum
In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes "u € ([acA. r‘‘{a})" and "acA"
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shows "(a,u) € r"
using assms by auto

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes "1 € ((|a€cA. r-‘‘{a})" and "acA"
shows "(1,a) € "
using assms by auto

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAminimum(r,()a€cA. r‘‘{a})" and
A4: "VaehA. (a,u) € r"
shows "(Supremum(r,A),u) € r"
proof -
let 70 = "(NacA. r‘‘{a}"
from A4 have "VacA. u € r‘‘{a}" using image_singleton_iff
by simp
with A2 have "ue?U" by auto
with A1 A3 show "(Supremum(r,A),u) € r"
using Order_ZF_4_L4 Supremum_def by simp
qed

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAmaximum(r,()a€A. r-‘‘{a})" and
A4: "VaeA. (1,a) € r"
shows "(1,Infimum(r,A)) € r"
proof -
let 7L = "(NacA. r-‘‘{a}"
from A4 have "VacA. 1 € r-‘‘{a}" using vimage_singleton_iff
by simp
with A2 have "1€?L" by auto
with A1 A3 show "(1,Infimum(r,A)) € r"
using Order_ZF_4_L3 Infimum_def by simp
qed

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "VxeA. (x,z) € r" and
A4: "Wy. (VxeA. (x,y) € r) — (z,y) € "
shows
"HasAminimum(r,()acA. r‘‘{a})"
"z = Supremum(r,A)"
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proof -
let 7B = "(acA. r‘‘{a}"
from A2 A3 A4 have I: "z € 7B" "Wye?B. (z,y) € r"
by auto
then show "HasAminimum(r,[)acA. r‘‘{a})"
using HasAminimum_def by auto
from A1 I show "z = Supremum(r,A)"
using Order_ZF_4_L15 Supremum_def by simp
qed

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:

assumes Al: ‘"antisym(r)" and A2: "A#0" and
A3: "HasAmaximum(r,A)"
shows

"HasAminimum(r,()a€A. r‘‘{a})"
"Maximum(r,A) = Supremum(r,A)"
proof -
let ?M = "Maximum(r,A)"
from A1 A3 have I: "?M € A" and II: "Vx€A. (x,7?M) € r"
using Order_ZF_4_L3 by auto
from I have III: "Vy. (Vx€A. (x,y) € r) — (TM,y) € r"
by simp
with A1 A2 II show "HasAminimum(r,()acA. r‘‘{a})"
by (rule Order_ZF_5_L5)
from A1 A2 II III show "?M = Supremum(r,A)"
by (rule Order_ZF_5_L5)
qed

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes Al: "r C XxX" and A2: "antisym(r)" and
A3: "r {is completel}" and
A4: "ACX" "A#0" and A5: "Jxe€X. Vye€A. (y,x) € r"
shows
"Supremum(r,A) € X"
"Wx€A. (x,Supremum(r,A)) € r"
proof -
from A5 have "IsBoundedAbove(A,r)" using IsBoundedAbove_def
by auto
with A3 A4 have "HasAminimum(r,(|acA. r¢‘{a})"
using IsComplete_def by simp
with A2 have "Minimum(r,(\acA. r‘‘{a}) € ( (NacA. r‘‘{a} )"
using Order_ZF_4_L4 by simp
moreover have "Minimum(r,()a€A. r‘‘{a}) = Supremum(r,A)"
using Supremum_def by simp
ultimately have I: "Supremum(r,A) € ( ()a€A. r¢‘{a} )"
by simp
moreover from A4 obtain a where "a€A" by auto
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ultimately have "(a,Supremum(r,A)) € r" using Order_ZF_5_L1
by simp
with Al show "Supremum(r,A) € X" by auto
from I show "Vx€A. (x,Supremum(r,A)) € r" using Order_ZF_5_L1
by simp
qed

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than y.

lemma Order_ZF_5_L8:
assumes Al: "r C XxX" and A2: "IsLinOrder(X,r)" and
A3: "r {is complete}" and
Ad: "ACX" "A#0" and A5: "Jxe€X. Vye€A. <y,x> € r" and

A6: "(y,Supremum(r,A)) € r" "y # Supremum(r,A)"
shows "Jz€A. (y,z) € r Ay # 2"
proof -

from A2 have
I: "antisym(r)" and
II: "trans(r)" and
III: "r {is total on} X"
using IsLinOrder_def by auto
from A1 A6 have T1: "yeX" by auto
{ assume A7: "Vz € A. (y,z) ¢ r V y=z2"
from A4 I have "antisym(r)" and "A#0" by auto
moreover have "Vx€A. (x,y) € r"
proof
fix x assume A8: "xeA"
with A4 have T2: "xeX" by auto
from A7 A8 have "(y,x) ¢ r V y=x" by simp
with III T1 T2 show "(x,y) € r"
using IsTotal_def total_is_refl refl_def by auto
qed
moreover have "Vu. (Vx€A. (x,u) € r) — (y,u) € r"
proof-
{ fix u assume A9: "Vx€A. (x,u) € r"
from A4 A5 have "IsBoundedAbove(A,r)" and "A#0"
using IsBoundedAbove_def by auto
with A3 A4 A6 I A9 have
"(y,Supremum(r,A)) € r A (Supremum(r,A),u) € r"
using IsComplete_def Order_ZF_5_L3 by simp
with II have "(y,u) € r" by (rule Foll_L3)
} then show "Vu. (Vx€A. (x,u) € r) — (y,u) € "
by simp
qed
ultimately have "y = Supremum(r,A)"
by (rule Order_ZF_5_L5)
with A6 have False by simp
} then show "JzeA. (y,z) € r A y # 2" by auto
qed
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7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the < type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = « line from the
relation.

definition
"StrictVersion(r) = r - {(x,x). x € domain(zr)}"

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
"(x,y) € StrictVersion(r) <— (x,y) € r A x#y"
using StrictVersion_def domain_def by auto

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
assumes Al: "antisym(r)" and A2: "(a,b) € StrictVersion(xr)"
shows "(b,a) ¢ StrictVersion(r)"
proof -
{ assume A3: "(b,a) € StrictVersion(r)"
with A2 have "(a,b) € r" and "(b,a) € r"
using def_of_strict_ver by auto
with A1 have "a=b" by (rule Foll_L4)
with A2 have False using def_of_strict_ver
by simp
} then show "(b,a) ¢ StrictVersion(r)" by auto
qed

The strict version of totality.

lemma strict_of_tot:
assumes "r {is total on} X" and "a€X" "beX" "a#b"
shows "(a,b) € StrictVersion(r) V (b,a) € StrictVersion(r)"
using assms IsTotal_def def_of_strict_ver by auto

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes Al: "antisym(r)" and A2: "r {is total on} X"
and A3: "aeX" "beXx"
and A4: "s = StrictVersion(r)"
shows "Exactly_1_of_3_holds((a,b) € s, a=b,(b,a) € s)"
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proof -
let 7p = "(a,b) € s"
let 7q = "a=b"
let 7r = "(b,a) € s"
from A2 A3 A4 have "7p V 7q V ?r"
using strict_of_tot by auto
moreover from Al A4 have "?p — —7q A —7r"
using def_of_strict_ver strict_of_antisym by simp
moreover from A4 have "?7q — —7p A —7r"
using def_of_strict_ver by simp
moreover from Al A4 have "?r — —7p A —7qQ"
using def_of_strict_ver strict_of_antisym by auto
ultimately show "Exactly_1_of_3_holds(?7p, ?q, 7r)"
by (rule Foll_L5)
qed

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes Al: "IsLinOrder(X,r)" and
A2: "aeX" "beX" and
A3: "s = StrictVersion(r)"
shows "Exactly_1_of_3_holds((a,b) € s, a=b,(b,a) € s)"
using assms IsLinOrder_def strict_ans_tot_trich by auto

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes Al: "antisym(r)" and A2: "(a,b) € r"
shows "(b,a) ¢ StrictVersion(r)"
proof -
{ assume A3: "(b,a) € StrictVersion(r)"
with A2 have "(a,b) € StrictVersion(r)"
using def_of_strict_ver by auto
with A1 A3 have False using strict_of_antisym
by blast
} then show "(b,a) ¢ StrictVersion(r)" by auto
qed

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes Al: "trans(r)" and A2: "antisym(r)" and
A3: "s= StrictVersion(r)" and A4: "(a,b) € s" "(b,c) € s"
shows "(a,c) € s"
proof -
from A3 A4 have I: "(a,b) € r A (b,c) € "
using def_of_strict_ver by simp
with A1 have "(a,c) € r" by (rule Foll_L3)
moreover
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{ assume "a=c"
with I have "(a,b) € r" and "(b,a) € r" by auto
with A2 have "a=b" by (rule Foll_L4)
with A3 A4 have False using def_of_strict_ver by simp
} then have "a#c" by auto
ultimately have "(a,c) € StrictVersion(r)"
using def_of_strict_ver by simp
with A3 show ?7thesis by simp
qed

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes Al: "trans(r)" and A2: "antisym(r)"
shows "trans(StrictVersion(r))"
proof -
let 7s = "StrictVersion(r)"
from A1 A2 have
W xyz (x,y) €7 Ay, z) €?s — (x, z) € 7"
using strict_of_transA by blast
then show "trans(StrictVersion(r))" by (rule Foll_L2)
qed

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.

lemma strict_of_compl:

assumes Al: "r C XxX" and A2: "IsLinOrder(X,r)" and

A3: "r {is complete}" and

A4: "ACX" "A#0" and A5: "s = StrictVersion(r)" and

A6: "JueX. VyeA. (y,u) € s"

shows

"JxeX. ( Vyeh. (x,y) ¢ s ) A (VyeX. (y,x) € s — (Jz€A. (y,z) € s))"
proof -

let ?x = "Supremum(r,A)"
from A2 have I: "antisym(r)" using IsLinOrder_def
by simp

moreover from A5 A6 have "JueX. Vye€A. (y,u) € r"
using def_of_strict_ver by auto

moreover note Al A3 A4

ultimately have II: "7x € X" "Vye€A. (y,?x) € r"
using Order_ZF_5_L7 by auto

then have III: "JxeX. VyeA. (y,x) € r" by auto

from A5 I II have "7x € X" "VyeA. (7x,y) ¢ s"
using geq_impl_not_less by auto

moreover from Al A2 A3 A4 A5 III have
"WyeX. (y,?x) € s — (Jz€A. (y,z) € s)"
using def_of_strict_ver Order_ZF_5_L8 by simp

ultimately show
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"IxeX. (Vyeh. (x,y) ¢ s ) A (VyeX. (y,x) € s — (Jz€h. (y,z) €
S))Il

by auto
qed

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes Al: "r C AxA"
shows "StrictVersion(r) C AxA"
using assms StrictVersion_def by auto

end

8 Order on natural numbers

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF
begin

This theory proves that < is a linear order on N. < is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

8.1 Order on natural numbers
This is the only section in this theory.

To prove that < is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:
assumes "acnat" and "b€nat"
shows "a < bV b < a"
proof -
from assms have I: "Ord(a) A 0rd(b)"
using nat_into_0Ord by auto
then have "a € bV a=DbVbe a"
using Ord_linear by simp
with I have "a < bV a=bV b < a"
using 1tI by auto
with I show "a < b Vv b < a"
using le_iff by auto
qed

< is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.
lemma NatOrder_ZF_1_L2:

shows

"antisym(Le)"

"trans(Le)"
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"Le {is total on} nat"
"IsLinOrder(nat,Le)"
proof -
show "antisym(Le)"
using antisym_def Le_def le_anti_sym by auto
moreover show "trans(Le)"
using trans_def Le_def le_trans by blast
moreover show "Le {is total on} nat"
using IsTotal_def Le_def NatOrder_ZF_1_L1 by simp
ultimately show "IsLinOrder(nat,Le)"
using IsLinOrder_def by simp
qed

The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as
well as a member).

lemma natord_lin_on_each_nat:
assumes Al: "n € nat" shows "IsLinOrder(n,Le)"

proof -
from A1 have "n C nat" using nat_subset_nat
by simp
then show 7thesis using NatOrder_ZF_1_L2 ord_linear_subset
by blast
qed
end

9 Functions - introduction

theory funcl imports func Foll ZF1
begin

This theory covers basic properties of function spaces. A set of functions
with domain X and values in the set Y is denoted in Isabelle as X — Y. It
just happens that the colon ”:” is a synonym of the set membership symbol
€ in Isabelle/ZF so we can write f : X — Y instead of f € X — Y. This is
the only case that we use the colon instead of the regular set membership

symbol.

9.1 Properties of functions, function spaces and (inverse) im-
ages.

Functions in ZF are sets of pairs. This means that if f : X — Y then
f € X xY. This section is mostly about consequences of this understanding
of the notion of function.
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We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that £-¢ ¢ (A) means the
inverse image of the set A.

definition

"PresColl(f,S,T) = V AeT. f-¢“(A)eS"
A definition that allows to get the first factor of the domain of a binary
function f: X xY — Z.

definition
"fstdom(f) = domain(domain(f))"
If a function maps A into another set, then A is the domain of the function.

lemma funcl_1_L1: assumes "f:A—C" shows "domain(f) = A"
using assms domain_of_fun by simp

Standard Isabelle defines a function(f) predicate. the next lemma shows
that our function satisfy that predicate. It is a special version of Isabelle’s
fun_is_function.

lemma fun_is_fun: assumes "f:X—Y" shows "function(f)"
using assms fun_is_function by simp
A lemma explains what fstdom is for.

lemma fstdomdef: assumes Al: "f: XxY — Z" and A2: "Y=0"
shows "fstdom(f) = X"

proof -
from A1 have "domain(f) = XxY" using funci_1_L1
by simp
with A2 show "fstdom(f) = X" unfolding fstdom_def by auto
qed

A first-order version of Pi_type.

lemma funci_1_L1A: assumes Al: "f:X—Y" and A2: "VxeX. £(x) € 2"
shows "f:X—Z"
proof -
{ fix x assume "xeX"
with A2 have "f‘(x) € Z" by simp }
with Al show "f:X—Z" by (rule Pi_type)
qed

A variant of func1l_1_L1A.

lemma funci_1_L1B: assumes Al: "f:X—Y" and A2: "YCZ"
shows "f:X—Z"
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proof -
from A1 A2 have "VxeX. f¢(x) € Z"
using apply_funtype by auto
with Al show "f:X—Z" using funcl_1_L1A by blast
qed

There is a value for each argument.

lemma funci_1_L2: assumes Al: "f:X—Y" "xeX"
shows "JyeY. (x,y) € f"
proof-

from Al have "f‘(x) € Y" using apply_type by simp
moreover from Al have "( x,f‘(x))€ f" using apply_Pair by simp
ultimately show ?7thesis by auto
qed
The inverse image is the image of converse. True for relations as well.
lemma vimage_converse: shows "r-‘‘(A) = converse(r)‘‘(A)"
using vimage_iff image_iff converse_iff by auto
The image is the inverse image of converse.
lemma image_converse: shows "converse(r)-‘‘(A) = r (A"
using vimage_iff image_iff converse_iff by auto
The inverse image by a composition is the composition of inverse images.
lemma vimage_comp: shows "(r 0 s)-“‘(A) = s=““(r-““(A))"
using vimage_converse converse_comp image_comp image_converse by simp
A version of vimage_comp for three functions.
lemma vimage_comp3: shows "(r 0 s 0 t)-““(A) = t=““(s=““(r=““(A)N"
using vimage_comp by simp
Inverse image of any set is contained in the domain.

lemma funcli_1_L3: assumes Al: "f:X—Y" shows "f-<¢(D) C X"
proof-
have "Vx. xef-‘“(D) — x € domain(f)"
using vimage_iff domain_iff by auto
with A1 have "Vx. (x € £-°“(D)) — (x€X)" using funcl_1_L1 by simp
then show 7thesis by auto
qed

The inverse image of the range is the domain.

lemma funci_1_L4: assumes "f:X—Y" shows "f-‘‘(Y) = X"
using assms funcl_1_L3 funci_1_L2 vimage_iff by blast

The arguments belongs to the domain and values to the range.

lemma funci_1_L5:
assumes Al: "( x,y) € £" and A2: "f:X—>Y"
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shows "xeX A yeY"
proof
from A1 A2 show "x€X" using apply_iff by simp
with A2 have "f‘(x)€ Y" using apply_type by simp
with A1 A2 show "yeY" using apply_iff by simp
qed

Function is a subset of cartesian product.

lemma fun_subset_prod: assumes Al: "f:X—Y" shows "f C XxY"
proof
fix p assume "p € "
with A1 have "Ix€X. p = (x, £(x))"
using Pi_memberD by simp
then obtain x where I: "p = (x, £(x))"
by auto
with A1 ‘p € £ have "xeX A £(x) € Y"
using funcl_1_L5 by blast
with I show "p € XxY" by auto
qed

The (argument, value) pair belongs to the graph of the function.

lemma func1_1_L5A:
assumes Al: "f:X—Y" "xeX" "y = £(x)"
shows "(x,y) € f" "y € range(f)"
proof -
from A1 show "(x,y) € f" using apply_Pair by simp
then show "y € range(f)" using rangeI by simp
qed

The next theorem illustrates the meaning of the concept of function in ZF.

theorem fun_is_set_of_pairs: assumes Al: "f:X—Y"
shows "f = {(x, £°(x)). x € X}"
proof
from A1 show "{(x, £‘(x)). x € X} C f" using funcl_1_L5A
by auto
next
{ fix p assume "p € f"
with A1l have "p € XxY" using fun_subset_prod
by auto
with A1 ‘p € £¢ have "p € {(x, £‘(x)). x € X}"
using apply_equality by auto
} thus "f C {(x, £°(x)). x € X}" by auto
qed

The range of function thet maps X into Y is contained in Y.

lemma funci_1_L5B:
assumes Al: "f:X—Y" shows "range(f) C Y"
proof
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fix y assume "y € range(f)"
then obtain x where "( x,y) € £"
using range_def converse_def domain_def by auto
with Al show "yeY" using funcli_1_L5 by blast
qed

The image of any set is contained in the range.

lemma funcl_1_L6: assumes Al: "f:X—Y"
shows "f¢¢(B) C range(f)" and "f‘‘(B) C Y"
proof -
show "f‘‘(B) C range(f)" using image_iff rangel by auto
with Al show "f‘‘(B) C Y" using funcl_1_L5B by blast
qed

The inverse image of any set is contained in the domain.

lemma func1l_1_L6A: assumes Al: "f:X—Y" shows "f-‘‘(A)CX"
proof
fix x
assume A2: "xef-¢‘(A)" then obtain y where "( x,y) € £"
using vimage_iff by auto
with Al show "xe€X" using funci_1_L5 by fast
qed

Image of a greater set is greater.

lemma funci_1_L8: assumes Al: "ACB" shows "f‘‘(A)C f£¢¢(B)"
using assms image_Un by auto

A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma funci_1_L9: assumes Al: "f:X—Y" and A2: "ACX"
shows "A C f-““(£°<(A)"

proof -
from A1 A2 have "VxeA. ( x,f‘(x)) € f" wusing apply_Pair by auto
then show 7thesis using image_iff by auto

qed

The inverse image of the image of the domain is the domain.

lemma inv_im_dom: assumes Al: "f:X—Y" shows "f-‘‘(£f‘‘(X)) = X"
proof
from A1 show "f-“‘(£‘‘(X)) C X" using funcl_1_L3 by simp
from Al show "X C £f-¢‘(£°“(X))" using funcl_1_L9 by simp
qed

A technical lemma needed to make the func1_1_L11 proof more clear.

lemma funci_1_L10:
assumes Al: "f C XxY" and A2: "Jly. (ye€Y A (x,y) € £)"
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shows "J!y. (x,y) € £"

proof
from A2 show "Jy. (x, y) € £" by auto
fix y n assume "(x,y) € £" and "(x,n) € £"
with A1 A2 show "y=n" by auto

qed

If f C X xY and for every x € X there is exactly one y € Y such that
(z,y) € f then f maps X to Y.

lemma funci_1_L11:
assumes "f C XxY" and "Vxe€X. J!y. yeY A (x,y) € f"
shows "f: X—Y" using assms funcl_1_L10 Pi_iff_old by simp

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lambda expressions syntax so I
could not apply it. This lemma is a workaround for this. Besides, lambda
expressions are not readable.

lemma funci1_1_L11A: assumes Al: "VxeX. b(x) € Y"
shows "{( x,y) € XxY. b(x) = y} : X—>Y"
proof -
let 7f = "{( x,y) € XxY. b(x) = y}"
have "7f C XXY" by auto
moreover have "Vxe€X. Jly. yeY A ( x,y) € 7f"
proof
fix x assume A2: "xeX"
show "Jly. yeY A (x, y) € {(x,y) € ExXY . b(x) = y}"
proof
from A2 A1 show
"Jy. yeY A (%, y) € {{x,y) € XXY . b(x) = y}"
by simp
next
fix y y1
assume "yeY A (x, y) € {(x,y) € XxY . b(x) = y}"
and "y1eY A (x, y1) € {(x,y) € XxY . b(x) = y}"
then show "y = y1" by simp
qed
qed
ultimately show "{({ x,y) € XxY. b(x) = y} : X—>Y"
using funcl_1_L11 by simp
qed

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes Al: "VxeX. b(x) € Y"
shows "{(x,b(x)). x€X} : X—Y"
proof -
let 7 = "{(x,b(x)). xeX}"
{ fix x assume A2: "xeX"
have "3J!y. yeY A (x, y) € 7f"
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proof
from A1 A2 show "Jy. yeY A (x, y) € 7f"
by simp
next fix y yl assume "yeY A (x, y) € 7f"
and "yleY A (x, yl) € 7f"
then show "y = y1" by simp
qed
} then have "VxeX. Jly. yeY A ( x,y) € 7"
by simp
moreover from Al have "7f C XxY" by auto
ultimately show ?7thesis using funci_1_L11
by simp
qed

The value of a function defined by a meta-function is this meta-function.

lemma funci_1_L11B:
assumes Al: "f:X—Y" "xeX"

and A2: "f = {{ x,y) € XxY. b(x) = y}"
shows "f‘(x) = b(x)"
proof -

from A1 have "({ x,f‘(x)) € f" using apply_iff by simp
with A2 show 7thesis by simp
qed

The next lemma will replace func1_1_L11B one day.

lemma ZF_fun_from_tot_val:
assumes Al: "f:X—>Y" "xeX"

and A2: "f = {(x,b(x)). xeX}"
shows "f‘(x) = b(x)"
proof -

from A1 have "( x,f‘(x)) € f" using apply_iff by simp
with A2 show ?7thesis by simp
qged

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

lemma ZF_fun_from_tot_valO:
assumes "f:X—Y" and "f = {(x,b(x)). x€X}"
shows "VxeX. £(x) = b(x)"
using assms ZF_fun_from_tot_val by simp

Another way of expressing that lambda expression is a function.

lemma lam_is_fun_range: assumes "f={(x,g(x)). x€X}"
shows "f:X—range(f)"

proof -
have "VxeX. g(x) € range({(x,g(x)). x€X})" unfolding range_def
by auto

then have "{(x,g(x)). x€X} : X—range({(x,g(x)). x€X})"
by (rule ZF_fun_from_total)
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with assms show ?7thesis by auto
qed

Yet another way of expressing value of a function.

lemma ZF_fun_from_tot_vall:

assumes "x€X" shows "{(x,b(x)). x€X} (x)=b(x)"
proof -

let 7f = "{(x,b(x)). x€X}"

have "7f:X—range(?f)" using lam_is_fun_range by simp

with assms show ?7thesis using ZF_fun_from_tot_valO by simp
qed

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma funci_1_L11C: assumes Al: "f:X—Y" and A2: "Vx€A. b(x)eB"
and A3: "XNA = 0" and Dg: "g = £ U {(x,b(x)). x€A}"
shows
"g : XUA — YUB"
"WxeX. gi(x) = £(x)"
"Wxeh. g (x) = b(x)"
proof -
let ?h = "{(x,b(x)). x€A}"
from A1 A2 A3 have
I: "f:X—=Y" "?h : A—B" "XNA = 0"
using ZF_fun_from_total by auto
then have "fU?h : XUA — YUB"
by (rule fun_disjoint_Un)
with Dg show "g : XUA — YUB" by simp
{ fix x assume A4: "xeA"
with A1 A3 have "(fU?h) ‘(x) = 7h‘(x)"
using funcl_1_L1 fun_disjoint_apply2
by blast
moreover from I A4 have "7h‘(x) = b(x)"
using ZF_fun_from_tot_val by simp
ultimately have "(fU7h)‘(x) = b(x)"
by simp
with Dg show "VxeA. g‘(x) = b(x)" by simp
fix x assume A5: "xeX"
with A3 I have "x ¢ domain(?h)"
using funci_1_L1 by auto
then have "(fU?h) ‘(x) = £(x)"
using fun_disjoint_applyl by simp
} with Dg show "VxeX. g‘(x) = £°(x)" by simp
qed

e

We can extend a function by specifying its value at a point that does not
belong to the domain.

lemma funci_1_L11D: assumes Al: "f:X—Y" and A2: "a¢X"
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and Dg: "g = £ U {(a,b)}"
shows
"g : XU{a} — YU{b}"
"WxeX. g (x) = £(x)"
ngt(a) = p"
proof -
let 7h = "{(a,b)}"
from A1 A2 Dg have I:
"f:X—Y" "Wxe{a}. be{b}" "Xn{a} = 0" "g =f U {(x,b). xe{a}}"
by auto
then show "g : XU{a} — YU{b}"
by (rule funcl_1_L11C)
from I show "VxeX. g‘(x) = £°(x)"
by (rule funcl_1_L11C)
from I have "Vxe{a}. g‘(x) = b"
by (rule funcl_1_L11C)
then show "g‘(a) = b" by auto
qed

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma funci_1_L11E:

assumes Al: "f:X—Y" and

A2: "VxeA. b(x)€B" and

A3: "XNA = 0" and A4: "a¢ XUA"

and Dg: "g = £ U {(x,b(x)). x€A} U {(a,c)}"

shows

"g : XUAU{a} — YUBU{c}"

"WxeX. g(x) = £ ()"

"WxeA. g (x) = b(x)"

ngl(a) = c"

proof -

let 7h = "f U {(x,b(x)). x€A}"

from assms show "g : XUAU{a} — YUBU{cl}"
using func1_1_L11C funcl_1_L11D by simp

from A1 A2 A3 have I:
"fiX—Y" "Wx€A. b(x)EB" "XNA = 0" "?h = f U {(x,b(x)). x€A}"
by auto

from assms have
II: "?h : XUA — YUB" "a¢ XUA" "g = 7h U {(a,c)}"
using func1l_1_L11C by auto

then have III: "Vx€XUA. g‘(x) = ?h‘(x)" by (rule funcl_1_L11D)

moreover from I have "VxeX. 7h¢(x) = £(x)"
by (rule funcl_1_L11C)

ultimately show "VxeX. g‘(x) = £‘(x)" by simp

from I have "Vxe€A. 7h‘(x) = b(x)" by (rule funcl_ 1_L11C)

with IIT show "Vxe€A. g‘(x) = b(x)" by simp

from II show "g‘(a) = c" by (rule funcl_1_L11D)

69



qed

A way of defining a function on a union of two possibly overlapping sets. We
decompose the union into two differences and the intersection and define a
function separately on each part.

lemma fun_union_overlap: assumes "Vx€ANB. h(x) € Y" "VxeA-B. f(x)
€ Y" "VxeB-A. g(x) € Y"

shows "{(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)). x
€ AUB}: AUB — Y"
proof -

let ?F = "{(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)).
x € ANB}H"

from assms have "Vx€AUB. (if x€A-B then f(x) else if x€B-A then g(x)
else h(x)) € Y"

by auto

then show 7thesis by (rule ZF_fun_from_total)

qed

Inverse image of intersection is the intersection of inverse images.

lemma invim_inter_inter_invim: assumes "f:X—Y"
shows "f-““(ANB) = f-“‘(A) N £-(B)"
using assms fun_is_fun function_vimage_Int by simp

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes invim_inter_inter_invim
which is proven for the case of two sets.

lemma funci_1_L12:
assumes Al: "B C Pow(Y)" and A2: "B#0" and A3: "f:X—Y"
shows "f-‘“(\B) = ((UeB. £-““(U))"
proof
from A2 show "f-¢‘([\B) C ([\UeB. f-‘“(U))" by blast
show "(NUeB. £-<<(M) C £-““(NB)"
proof
fix x assume A4: "x € ((UE€B. f-<“(U)"
from A3 have "VUeB. f-¢‘(U) C X" using funcli_1_L6A by simp
with A4 have "VUeB. xe€X" by auto
with A2 have "xe€X" by auto
with A3 have "J'!y. ( x,y) € £" using Pi_iff_old by simp
with A2 A4 show "x € f-‘‘((\B)" using vimage_iff by blast
qed
qed

The inverse image of a set does not change when we intersect the set with
the image of the domain.
lemma inv_im_inter_im: assumes "f:X—Y"

shows "f-“‘(A N £°°(X)) = £-<“(A)"

using assms invim_inter_inter_invim inv_im_dom funcl_1_L6A

by blast
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If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.

lemma funcl_1_L13: assumes Al:"f-¢“(A) # 0" shows "AF0"
using assms by auto

If the image of a set is not empty, then the set is not empty. Proof by
contradiction.

lemma funcl_1_L13A: assumes Al: "f‘‘(A)#0" shows "A#0"
using assms by auto

What is the inverse image of a singleton?

lemma funci_1_L14: assumes "feX—Y"
shows "f-¢‘({y}) = {xeX. £°(x) = y}"
using assms funcl_1_L6A vimage_singleton_iff apply_iff by auto

A lemma that can be used instead fun_extension_iff to show that two
functions are equal

lemma func_eq: assumes "f: X—=Y" "g: X—=Z"
and "VxeX. £(x) = g‘(x)"
shows "f = g" using assms fun_extension_iff by simp

Function defined on a singleton is a single pair.

lemma func_singleton_pair: assumes Al: "f : {a}—>X"
shows "f = {(a, £°(a))}"
proof -
let 7g = "{{a, £¢(a))}"
note Al
moreover have "7g : {a} — {f‘(a)}" using singleton_fun by simp
moreover have "Vx € {a}. £°(x) = 7g‘(x)" using singleton_apply
by simp
ultimately show "f = ?g" by (rule func_eq)
qed

A single pair is a function on a singleton. This is similar to singleton_fun
from standard Isabelle/ZF.

lemma pair_func_singleton: assumes Al: "y € Y"
shows "{(x,y)} : {x} — Y"
proof -
have "{(x,y)} : {x} — {y}" using singleton_fun by simp
moreover from A1 have "{y} C Y" by simp
ultimately show "{(x,y)} : {x} — Y"
by (rule funcl_1_L1B)
qed

The value of a pair on the first element is the second one.

lemma pair_val: shows "{(x,y)}‘(x) = y"
using singleton_fun apply_equality by simp
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A more familiar definition of inverse image.

lemma funcl_1_L15: assumes Al: "f:X—Y"
shows "f-“‘(A) = {xeX. £(x) € A}"
proof -
have "f-¢“(8) = (JyeA . £-““{yH"
by (rule vimage_eq_UN)
with Al show ?7thesis using funci_1_L14 by auto
qed

A more familiar definition of image.

lemma func_imagedef: assumes Al: "f:X—Y" and A2: "ACX"
shows "f¢‘(A) = {£f°(x). x € A}"
proof
from A1 show "f¢‘(A) C {f‘(x). x € A}"
using image_iff apply_iff by auto
show "{f‘(x). x € A} C £<(A)"
proof
fix y assume "y € {f(x). x € A}"
then obtain x where "x€A" and "y = £‘(x)"
by auto
with A1 A2 have "(x,y) € f" using apply_iff by force
with A1 A2 ‘x€A show "y € £‘‘(A)" using image_iff by auto
qed
qed

The image of a set contained in domain under identity is the same set.
lemma image_id_same: assumes "ACX" shows "id(X)‘‘(A) = A"

using assms id_type id_conv by auto
The inverse image of a set contained in domain under identity is the same
set.
lemma vimage_id_same: assumes "ACX" shows "id(X)-¢‘(A) = A"

using assms id_type id_conv by auto
What is the image of a singleton?

lemma singleton_image:
assumes "feX—Y" and "xeX"
shows "f‘{x} = {£°(x)}"
using assms func_imagedef by auto

If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma funci_1_L15D: assumes "f:X—Y" "x€A" "ACX"
shows "f‘(x) € £<(A)"
using assms func_imagedef by auto

Range is the image of the domain. Isabelle/ZF defines range (f) as domain(converse(£)),
and that’s why we have something to prove here.
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lemma range_image_domain:
assumes Al: "f:X—Y" shows "f‘‘(X) = range(f)"
proof
show "f‘‘(X) C range(f)" using image_def by auto
{ fix y assume "y € range(f)"
then obtain x where "(y,x) € converse(f)" by auto
with A1 have "xe€X" using funci_1_L5 by blast
with A1 have "f‘(x) € £°“(X)" using func_imagedef
by auto
with A1  ‘(y,x) € converse(f)‘ have "y € £¢‘(X)"
using apply_equality by auto
} then show "range(f) C f£¢‘(X)" by auto
qed

The difference of images is contained in the image of difference.

lemma diff_image_diff: assumes Al: "f: X—Y" and A2: "ACX"
shows "f ‘(X) - £°(A) C £f<“(X-A)"
proof
fix y assume "y € £¢°(X) - £°(A)"
hence "y € £°“(X)" and I: "y ¢ £°“(A)" by auto
with Al obtain x where "xeX" and II: "y = £°(x)"
using func_imagedef by auto
with A1 A2 I have "x¢A"
using funcl_1_L15D by auto
with ‘x€X¢ have "x € X-A" "X-A C X" by auto
with Al IT show "y € £¢‘(X-A)"
using funcl_1_L15D by simp
qed

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes Al: "f:X—Y" and
A2: "I#0" and A3: "VieI. P(i) C X"
shows "f‘‘((iel. P(i)) C ( Niel. £ “(P(E)) )"
proof
fix y assume A4: "y € £<°(i€Il. P(@))"
from A1 A2 A3 have "f‘‘(()i€Il. P(i)) = {£‘(x). x € ( ((i€Il. P(i) )}"
using ZF1_1_L7 func_imagedef by simp
with A4 obtain x where "x € ( [i€I. P(i) )" and "y = £‘(x)"
by auto
with A1 A2 A3 show "y € ( (i€I. £¢(P(i)) )" using func_imagedef
by auto
qed

The image of union is the union of images.

lemma image_of_Union: assumes Al: "f:X—Y" and A2: "VAeM. ACX"
shows "f<‘ (UM = J{£(a). AeM}"

proof
from A2 have "(JM C X" by auto
{ fix y assume "y € £°°(UM"

73



with A1 ‘(UM C X‘ obtain x where "xe(JM" and I: "y = £(x)"
using func_imagedef by auto

then obtain A where "AeM" and "x€A" by auto

with assms I have "y € [J{f‘‘(A). A€M}" using func_imagedef by auto
} thus "f<<(UM) C J{£f(A). A€M}" by auto
{ fix y assume "y € J{f(A). AecM}"

then obtain A where "AeM" and "y € £°“(A)" by auto

with assms ‘(M C X¢ have "y € £°“(|JM)" using func_imagedef by auto
} thus "U{£<“). AeM} C £°°(UM" by auto

qed

The image of a nonempty subset of domain is nonempty.

lemma funcil_1_L15A:
assumes Al: "f: X—=Y" and A2: "ACX" and A3: "A#0"
shows "f<“(A) # O"
proof -
from A3 obtain x where "x€A" by auto
with A1 A2 have "f‘(x) € £“(a)"
using func_imagedef by auto
then show "f¢‘(A) # 0" by auto
qed

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma funci_1_L15B:
assumes "f:X—Y" and "ACX" and "Vyef‘‘(A). P(y)"
shows "VxeA. P(£f(x))"
using assms func_imagedef by simp

An image of an image is the image of a composition.

lemma funcl_1_L15C: assumes Al: "f:X—Y" and A2: "g:Y—Z"
and A3: "ACX"

shows

g (fr M) = g (£ (x)). xeA}"

llgll(ftl(A)) = (g O f)ll(A)ll
proof -

from A1 A3 have "{f‘(x). x€A} C Y"
using apply_funtype by auto

with A2 have "g‘‘{f‘(x). x€A} = {g (£ (x)). xcA}"
using func_imagedef by auto

with A1 A3 show I: "g‘“(£°“(A)) = {g‘(£°(x)). xe€A}"
using func_imagedef by simp

from A1 A3 have "VxeA. (g 0 £)(x) = g (£°(x)N"
using comp_fun_apply by auto

with I have "g‘‘(£°“(A)) = {(g 0 £)‘(x). x€A}"
by simp

moreover from A1l A2 A3 have "(g 0 £)“‘(A) = {(g 0 £)“(x). x€A}"
using comp_fun func_imagedef by blast

ultimately show "g‘‘(£‘‘(A)) = (g 0 £) ‘(A"
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by simp
qed

What is the image of a set defined by a meta-fuction?

lemma funci_1_L17:
assumes Al: "f € X—Y" and A2: "Vx€A. b(x) € X"
shows "f‘‘({b(x). x€A}) = {f‘(b(x)). xeA}"
proof -
from A2 have "{b(x). x€A} C X" by auto
with Al show 7thesis using func_imagedef by auto
qed

What are the values of composition of three functions?

lemma funci_1_L18: assumes Al: "f:A—B" "g:B—C" "h:C—D"
and A2: "xeA"
shows
"h0OgOf(x) €D"
"hOogOfH) & =h (g EE@N"
proof -
from A1 have "(h 0 g 0 £) : A—D"
using comp_fun by blast
with A2 show "(h 0 g 0 £)‘(x) € D" using apply_funtype
by simp
from A1 A2 have "(h 0 g 0 £)‘(x) = h‘( (g 0 £)(x))"
using comp_fun comp_fun_apply by blast
with A1 A2 show "(h 0 g 0 £)‘(x) = h*(g* (£ (x)))"
using comp_fun_apply by simp
qed

A composition of functions is a function. This is a slight generalization of
standard Isabelle’s comp_fun

lemma comp_fun_subset:
assumes Al: "g:A—B" and A2: "f:C—D" and A3: "B C C"
shows "f 0 g : A — D"
proof -
from A1 A3 have "g:A—C" by (rule funci_1_L1B)
with A2 show "f 0 g : A — D" using comp_fun by simp
qed

This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Con-
tributed by Victor Porton.

lemma comp_eq_id_iffl: assumes Al: "g: B—A" and A2: "f: A—C"
shows "(VyeB. £(g‘(y)) =y) «— £ 0 g = id(B)"
proof -
from assms have "f 0 g: B—C" and "id(B): B—B"
using comp_fun id_type by auto
then have "(VyeB. (f 0 g)‘y = id(B)‘(y)) +— £ 0 g = id(B)"
by (rule fun_extension_iff)
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moreover from A1 have
"WyeB. (f 0 g)‘y = £°(g‘y)" and "VyeB. id(B) ‘(y) = y"
by auto
ultimately show "(VyeB. £(g‘y) = y) «— f 0 g = id(B)" by simp
qed

A lemma about a value of a function that is a union of some collection of
functions.

lemma fun_Union_apply: assumes Al: "[JF : X—Y" and
A2: "fcF" and A3: "f:A—B" and A4: "xe€A"
shows "(JF)‘(x) = £(x)"
proof -
from A3 A4 have "(x, £‘(x)) € f" using apply_Pair
by simp
with A2 have "(x, £‘(x)) € JF" by auto
with A1 show "(JF)‘(x) = £‘(x)" using apply_equality
by simp
qed

9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict(£,A) of to mean a function
(or relation) f restricted to a set. This means that if f is a function defined
on X and A is a subset of X then restrict(f,A) is a function whith the
same values as f, but whose domain is A.

What is the inverse image of a set under a restricted fuction?

lemma func1_2_L1: assumes Al: "f:X—Y" and A2: "BCX"
shows "restrict(f,B)-‘‘(A) = f-““(A) N B"
proof -
let 7g = "restrict(f,B)"
from A1 A2 have "7g:B—Y"
using restrict_type2 by simp
with A2 Al show "7g-¢‘(A) = £-“(A) N B"
using funcl_1_L15 restrict_if by auto
qed

A criterion for when one function is a restriction of another. The lemma
below provides a result useful in the actual proof of the criterion and appli-
cations.

lemma funcl_2_L2:
assumes Al: "f:X—=Y" and A2: "g € A—Z"
and A3: "ACX" and A4: "f N AxXZ = g"
shows "VxeA. g‘(x) = £°(x)"
proof
fix x assume "xcA"
with A2 have "( x,g‘(x)) € g" using apply_Pair by simp
with A4 Al show "g‘(x) = £(x)" wusing apply_iff by auto
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qed

Here is the actual criterion.

lemma funcl_2_L3:
assumes Al: "f:X—Y" and A2: "g:A—Z"
and A3: "ACX" and A4: "f N AxXZ = g"
shows "g = restrict(f,A)"
proof
from A4 show "g C restrict(f, A)" using restrict_iff by auto
show "restrict(f, A) C g"
proof
fix z assume A5:"z € restrict(f,A)"
then obtain x y where D1:"zef A x€A A z = (x,y)"
using restrict_iff by auto
with A1 have "y = £¢(x)" using apply_iff by auto
with A1 A2 A3 A4 D1 have "y = g‘(x)" using funcl_2_L2 by simp
with A2 D1 show "z&g" using apply_Pair by simp
ged
qed

Which function space a restricted function belongs to?

lemma funcl_2_L4:
assumes Al: "f:X—Y" and A2: "ACX" and A3: "VxeA. £ (x) € 2"
shows "restrict(f,A) : A—Z"
proof -
let 7g = "restrict(f,A)"
from A1 A2 have "7g : A—Y"
using restrict_type2 by simp
moreover {
fix x assume "x€A"
with A1 A3 have "7g‘(x) € Z" using restrict by simp}
ultimately show 7thesis by (rule Pi_type)
qed

A simpler case of func1_2_L4, where the range of the original and restricted
function are the same.

corollary restrict_fun: assumes Al: "f:X—Y" and A2: "ACX"
shows "restrict(f,A) : A — Y"

proof -
from assms have "VxeA. £(x) € Y" using apply_funtype
by auto
with assms show ?7thesis using funcl_2_L4 by simp
qed

A composition of two functions is the same as composition with a restriction.

lemma comp_restrict:
assumes Al: "f : A—B" and A2: "g : X — C" and A3: "BCX"
shows "g 0 f = restrict(g,B) 0 f"
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proof -
from assms have "g 0 £ : A — C" using comp_fun_subset
by simp
moreover from assms have "restrict(g,B) 0 f : A — C"
using restrict_fun comp_fun by simp
moreover from Al have
"WxehA. (g 0 £)‘(x) = (restrict(g,B) 0 £)‘(x)"
using comp_fun_apply apply_funtype restrict
by simp
ultimately show "g 0 f = restrict(g,B) 0 f"
by (rule func_eq)
qed

A way to look at restriction. Contributed by Victor Porton.

lemma right_comp_id_any: shows "r 0 id(C) = restrict(r,C)"
unfolding restrict_def by auto

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to
shorten proofs.
We define constant(= ¢) functions on a set X in a natural way as ConstantFunction(X, c).

definition
"ConstantFunction(X,c) = Xx{c}"

Constant function belongs to the function space.

lemma funci_3_L1:
assumes Al: "ceY" shows "ConstantFunction(X,c) : X—Y"

proof -
from A1 have "Xx{c} = {( x,y) € XxY. ¢ = y}"
by auto
with Al show ?7thesis using funcl_1_L11A ConstantFunction_def
by simp
qed

Constant function is equal to the constant on its domain.

lemma func1_3_L2: assumes Al: "xeX"
shows "ConstantFunction(X,c) ‘(x) = c"
proof -
have "ConstantFunction(X,c) € X—{c}"
using funcl1_3_L1 by simp
moreover from Al have "( x,c) € ConstantFunction(X,c)"
using ConstantFunction_def by simp
ultimately show 7thesis using apply_iff by simp
qed
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9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.

For injections the image a difference of two sets is the difference of images

lemma inj_image_dif:
assumes Al: "f € inj(A,B)" and A2: "C C A"
shows "f¢‘(A-C) = £°°(4) - £¢(C)"
proof
show "f‘‘(A - C) C £°(A) - £(C)"
proof
fix y assume A3: "y € £°°(A - C)"
from A1 have "f:A—B" using inj_def by simp
moreover have "A-C C A" by auto
ultimately have "f‘‘(A-C) = {f‘(x). x € A-C}"
using func_imagedef by simp
with A3 obtain x where I: "f‘(x) = y" and "x € A-C"
by auto
hence "xe€A" by auto
with ‘f:A—B‘ I have "y € £<“(A)"
using func_imagedef by auto
moreover have "y ¢ £(C)"
proof -
{ assume "y € £°(C)"
with A2 ‘f:A—B°‘ obtain xg
where II: "f‘(x9) = y" and "xy, € C"
using func_imagedef by auto
with A1 A2 T ‘x€A‘ have
"f € inj(A,B)" "f(x) = £(xp)" "x€A" "xy € A"
by auto
then have "x = x¢" by (rule inj_apply_equality)
with ‘x € A-C‘ ‘xp € C‘ have False by simp
} thus 7thesis by auto
qed
ultimately show "y € £<¢(A) - £°°(C)" by simp
qed
from Al A2 show "f¢‘(A) - £°°(C) C f<“(A-C)"
using inj_def diff_image_diff by auto
qed

For injections the image of intersection is the intersection of images.

lemma inj_image_inter: assumes Al: "f € inj(X,Y)" and A2: "ACX" "BCX"
shows "f‘(ANB) = £<“(A) N £°(B)"
proof
show "f‘“(ANB) C £<“(A) N £°°(B)" using image_Int_subset by simp
{ from A1 have "f:X—Y" using inj_def by simp
fix y assume "y € £°(A) N £°(B)"
then have "y € £°“(A)" and "y € £°“(B)" by auto
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with A2 ‘f:X—Y‘ obtain x4 xp where
"xq € A" "xp € B" and I: "y = £f°(x4)" "y = £f‘(xp)"
using func_imagedef by auto
with A2 have "xy € X" "xp € X" and " f£(x4) = £°(xp)" by auto

with A1 have "x,4 = xp" using inj_def by auto
with ‘x4 € A¢ ‘xp € B¢ have "f‘(xy4) € {f°(x). x € ANB}" by auto
moreover from A2 ‘f:X—Y¢ have "f¢‘(ANB) = {f‘(x). x € ANB}"
using func_imagedef by blast

ultimately have "f‘(xy) € £¢“(ANB)" by simp
with I have "y € £°“(ANB)" by simp

} thus "£¢°(A) N £°(B) C £°“(A N B)" by auto

qed

For surjection from A to B the image of the domain is B.

lemma surj_range_image_domain: assumes Al: "f € surj(4,B)"
shows "f‘‘(A) = B"
proof -
from A1 have "f‘‘(A) = range(f)"
using surj_def range_image_domain by auto
with Al show "f‘‘(A) = B" wusing surj_range
by simp
qed

For injections the inverse image of an image is the same set.

lemma inj_vimage_image: assumes "f € inj(X,Y)" and "ACX"
shows "f-““(£°‘(A)) = A"
proof -
have "f-““(£°¢(A)) = (converse(f) 0 £) ‘(A"
using vimage_converse image_comp by simp
with assms show ?7thesis using left_comp_inverse image_id_same
by simp
qed

For surjections the image of an inverse image is the same set.

lemma surj_image_vimage: assumes Al: "f € surj(X,Y)" and A2: "ACY"
shows "f¢‘(£f-°¢(4)) = A"
proof -
have "f¢¢(£-““(A)) = (£ O converse(f)) ‘(A"
using vimage_converse image_comp by simp
with assms show ?7thesis using right_comp_inverse image_id_same
by simp
qed

A lemma about how a surjection maps collections of subsets in domain and
rangge.

lemma surj_subsets: assumes Al: "f € surj(X,Y)" and A2: "B C Pow(Y)"
shows "{ f<“(U). U € {f-“(V). VeB} } = B"
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proof
{ fix W assume "W € { £°(U0). U € {f-<“(V). VeB} }"
then obtain U where I: "U € {f-“‘(V). VeB}" and II: "W = £°“(U"
by auto
then obtain V where "VeB" and "U = £-°“(V)" by auto
with IT have "W = £°(£-°“(V))" by simp
moreover from assms ‘VeB‘ have "f € surj(X,Y)" and "VCY" by auto

ultimately have "W=V" using surj_image_vimage by simp
with ‘VeB‘ have "W € B" by simp
thus "{ £°(W. U € {f-°“(V). VeB} } C B" by auto
fix W assume "WeB"
let 70 = "f-<<(W)"
from ‘WeB‘ have "7U € {f-¢‘(V). VEB}" by auto
moreover from Al A2 ‘WeB¢ have "W = £¢(?U)" using surj_image_vimage
by auto
ultimately have "W € { £“(U). U € {£f-°“(V). VeB} }" by auto
} thus "B C { £¢°(U). U € {£-““(V). VEB} }" by auto
qed

-

Restriction of an bijection to a set without a point is a a bijection.

lemma bij_restrict_rem:
assumes Al: "f € bij(A,B)" and A2: "acA"
shows "restrict(f, A-{a}) € bij(A-{a}, B-{f<(a)})"
proof -
let 7C = "A-{a}"
from A1 have "f € inj(A,B)" "?C C A"
using bij_def by auto
then have "restrict(f,?C) € bij(?C, £¢(?7C))"
using restrict_bij by simp
moreover have "f¢‘(?C) = B-{f‘(a)}"
proof -
from A2 ‘f € inj(A,B)¢ have "f“‘(?C) = £°“(A) - £¢‘{a}"
using inj_image_dif by simp
moreover from A1 have "f‘‘(A) = B"
using bij_def surj_range_image_domain by auto
moreover from Al A2 have "f‘‘{a} = {f<(a)}"
using bij_is_fun singleton_image by blast
ultimately show "f‘¢(?C) = B-{f‘(a)}" by simp
qed
ultimately show 7thesis by simp
qed

The domain of a bijection between X and Y is X.

lemma domain_of_bij:
assumes Al: "f € bij(X,Y)" shows "domain(f) = X"
proof -
from A1 have "f:X—Y" using bij_is_fun by simp
then show "domain(f) = X" using funcl_1_L1 by simp
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qed

The value of the inverse of an injection on a point of the image of a set
belongs to that set.

lemma inj_inv_back_in_set:
assumes Al: "f € inj(A,B)" and A2: "CCA" and A3: "y € £°<(C)"
shows
"converse(f) ‘(y) € C"
"f‘(converse(f) ‘(y)) = y"

proof -
from A1 have I: "f:A—B" using inj_is_fun by simp
with A2 A3 obtain x where II: "xeC" "y = f°(x)"

using func_imagedef by auto
with A1 A2 show "converse(f) ‘(y) € C" using left_inverse
by auto
from A1 A2 T II show "f‘(converse(f)‘(y)) = y"
using funcl_1_L5A right_inverse by auto
qed

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.

lemma inj_point_of_image:
assumes Al: "f € inj(A,B)" and A2: "CCA" and
A3: "xeA" and A4: "f(x) € £C(COO"
shows "x € C"
proof -
from A1 A2 A4 have "converse(f)‘(f‘(x)) € C"
using inj_inv_back_in_set by simp
moreover from A1 A3 have "converse(f) ‘(f‘(x)) = x"
using left_inverse_eq by simp
ultimately show "x € C" by simp
qed

For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes Al: "f € inj(A,B)" and
A2: "I#0" and A3: "VieI. P(i) C A"
shows "f¢‘((i€l. P(1)) = ( [i€l. £°°(P(1)) )"
proof
from A1 A2 A3 show "f¢‘(i€I. P(i)) C ( (i€Il. £<(P(i)) )"
using inj_is_fun image_of_Inter by auto
from A1 A2 A3 have "f:A—B" and "( [)i€I. P(i) ) C A"
using inj_is_fun ZF1_1_L7 by auto
then have I: "f‘‘(Niel. P(i)) = { £f(x). x € ( ()iel. P(E) ) }"
using func_imagedef by simp
{ fix y assume A4: "y € ( ()i€l. £¢<(P(1)) )"
let 7x = "converse(f) ‘(y)"
from A2 obtain iy where "iyg € I" by auto
with A1 A4 have II: "y € range(f)" using inj_is_fun funcl_1_L6
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by auto
with A1 have III: "f‘(?x) = y" using right_inverse by simp
from A1 II have IV: "?x € A" using inj_converse_fun apply_funtype

by blast
{ fix i assume "i€I"
with A3 A4 III have "P(i) C A" and "f‘(?x) € f£<“(P@))"
by auto
with A1 IV have "?x € P(i)" using inj_point_of_image
by blast
} then have "VieI. ?x € P(i)" by simp
with A2 I have "f‘(?x) € £¢( [)i€Il. P(i) )"
by auto
with III have "y € £‘‘( ()i€I. P(i) )" by simp
} then show "( (NieI. £°“(P(i)) ) C £°¢( Niel. P )"
by auto
qed

An injection is injective onto its range. Suggested by Victor Porton.

lemma inj_inj_range: assumes "f € inj(4,B)"
shows "f € inj(A,range(£f))"
using assms inj_def range_of_fun by auto

An injection is a bijection on its range. Suggested by Victor Porton.

lemma inj_bij_range: assumes "f € inj(A,B)"
shows "f € bij(A,range(£f))"
proof -
from assms have "f € surj(A,range(f))" using inj_def fun_is_surj
by auto
with assms show ?7thesis using inj_inj_range bij_def by simp
qed

A lemma about extending a surjection by one point.

lemma surj_extend_point:
assumes Al: "f € surj(X,Y)" and A2: "a¢X" and
A3: "g = £ U {(a,b)}"
shows "g € surjXU{a},YU{p}H)"
proof -
from A1 A2 A3 have '"g : XU{a} — YU{b}"
using surj_def funcl_1_L11D by simp
moreover have "Vy € YU{b}. dx € XU{a}. y = g (x)"
proof
fix y assume "y € Y U {b}"
then have "y € Y V y = b" by auto
moreover
{ assume "y € Y"
with A1l obtain x where "x€X" and "y = £(x)"
using surj_def by auto
with A1 A2 A3 have "x € XU{a}" and "y = g‘(x)"
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using surj_def funci_1_L11D by auto
then have "3Ix € XU{a}. y = g‘(x)" by auto }
moreover
{ assume "y = b"
with A1 A2 A3 have "y = g‘(a)"
using surj_def funcl_1_L11D by auto
then have "3Ix € XU{a}. y = g‘(x)" by auto }
ultimately show "Jx € XU{a}. y = g‘(x)"
by auto
qged
ultimately show "g € surj(Xu{a},YU{bH"
using surj_def by auto
qed

A lemma about extending an injection by one point. Essentially the same
as standard Isabelle’s inj_extend.

lemma inj_extend_point: assumes "f € inj(X,Y)" "a¢X" "bgy"
shows "(f U {(a,b)}) € inj(Xu{al},YU{b})"
proof -
from assms have "cons({a,b),f) € inj(cons(a, X), cons(b, Y))"
using assms inj_extend by simp
moreover have "cons({(a,b),f) = £ U {(a,b)}" and
"cons(a, X) = XU{a}" and "cons(b, Y) = YU{b}"
by auto
ultimately show 7thesis by simp
qed

A lemma about extending a bijection by one point.

lemma bij_extend_point: assumes "f € bij(X,Y)" "a¢X" "bgy"
shows "(f U {(a,b)}) € bijXu{a},YU{b})"
using assms surj_extend_point inj_extend_point bij_def
by simp

A quite general form of the ¢~ 'b = 1 implies a = b law.

lemma comp_inv_id_eq:
assumes Al: "converse(b) 0 a = id(A)" and
A2: "a C AXB" "b € surj(A,B)"
shows "a = b"
proof -
from A1 have "(b 0 converse(b)) 0 a = b 0 id(A)"
using comp_assoc by simp
with A2 have "id(B) 0 a = b 0 id(a)"
using right_comp_inverse by simp
moreover
from A2 have "a C AxB" and "b C AxB"
using surj_def fun_subset_prod
by auto
then have "id(B) 0 a = a" and "b 0 id(A) = b"
using left_comp_id right_comp_id by auto
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ultimately show "a = b" by simp
qed

A special case of comp_inv_id_eq - the a™'b = 1 implies ¢ = b law for
bijections.

lemma comp_inv_id_eq_bij:
assumes Al: "a € bij(A,B)" "b € bij(A,B)" and
A2: "converse(b) 0 a = id(A)"
shows "a = b"
proof -
from A1 have "a C AxB" and "b € surj(A,B)"
using bij_def surj_def fun_subset_prod
by auto
with A2 show "a = b" by (rule comp_inv_id_eq)
qed

Converse of a converse of a bijection the same bijection. This is a special
case of converse_converse from standard Isabelle’s equalities theory where
it is proved for relations.

lemma bij_converse_converse: assumes "a € bij(4,B)"
shows "converse(converse(a)) = a"
proof -
from assms have "a C AXB" using bij_def surj_def fun_subset_prod by
simp
then show 7thesis using converse_converse by simp
qed

If a composition of bijections is identity, then one is the inverse of the other.

lemma comp_id_conv: assumes Al: "a € bij(A,B)" "b € bij(B,A)" and
A2: "b 0 a = id(A)"
shows "a = converse(b)" and "b = converse(a)"
proof -
from A1 have "a € bij(4,B)" and "converse(b) € bij(A,B)" using bij_converse_bij

by auto
moreover from assms have "converse(converse(b)) 0 a = id(A)"
using bij_converse_converse by simp
ultimately show "a = converse(b)" by (rule comp_inv_id_eq_bij)
with assms show "b = converse(a)" using bij_converse_converse by simp
qed

A version of comp_id_conv with weaker assumptions.

lemma comp_conv_id: assumes Al: "a € bij(A,B)" and A2: "b:B—A" and
A3: "VxeA. pi(a‘(x)) = x"
shows "b € bij(B,A)" and "a = converse(b)" and "b = converse(a)"
proof -
have "b € surj(B,A)"
proof -
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have "VxeA. JyeB. b‘(y) = x"
proof -
{ fix x assume "x€A"
let 7y = "a‘(x)"
from A1 A3 ‘x€A‘ have "7yeB" and "b‘(?7y) = x"
using bij_def inj_def apply_funtype by auto
hence "JdyeB. b‘(y) = x" by auto
} thus ?thesis by simp
qed
with A2 show "b € surj(B,A)" using surj_def by simp
qed
moreover have "b € inj(B,A)"
proof -
have "VweB.VyeB. b‘(w) = b‘(y) — w=y"
proof -
{ fix w y assume "weB" "yeB" and I: "b‘(w) = b‘(y)"
from A1 have "a € surj(A,B)" unfolding bij_def by simp
with ‘weB‘ obtain x, where "x,, € A" and II: "a‘(xy,) = w"
using surj_def by auto
with I have "b‘(a‘(xy)) = b‘(y)" by simp
moreover from ‘a € surj(A,B)¢ ‘yeB¢ obtain x, where
"x, € A" and III: "a‘(x,) = y"
using surj_def by auto

moreover from A3 ‘x,, € A‘ ‘xy, € A° have "b‘(a‘(xy)) = X"
and "b‘(a‘(xy)) = x,"
by auto

ultimately have "x, = x," by simp
with IT IIT have "w=y" by simp
} thus ?thesis by auto
qed
with A2 show "b € inj(B,A)" using inj_def by auto
qed
ultimately show "b € bij(B,A)" using bij_def by simp
from assms have "b 0 a = id(A)" using bij_def inj_def comp_eq_id_iff1l
by auto
with A1 ‘b € bij(B,A) ¢ show "a = converse(b)" and "b = converse(a)"
using comp_id_conv by auto
qed

For a surjection the union if images of singletons is the whole range.

lemma surj_singleton_image: assumes Al: "f € surj(X,Y)"
shows "(JxeXx. {£‘(x)}) = y"
proof
from A1 show "(UxeX. {f‘(x)}) C y"
using surj_def apply_funtype by auto
next
{ fix y assume "y € Y"
with A1 have "y € (|JxeX. {£‘x)H"
using surj_def by auto
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} then show "Y C (|JxeX. {£‘(x)P" by auto
qed

9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product
of two sets. Such functions are called functions of two variables (although
really in ZF all functions admit only one argument). For every function of
two variables we can define families of functions of one variable by fixing the
other variable. This section establishes basic definitions and results for this
concept.

We can create functions of two variables by combining functions of one
variable.

lemma cart_prod_fun: assumes "f;:X;—Y;" "f5:X;—Y2" and

"g = {(p,(f1 (st (p)),f2 (snd(p)))). p € Xy XXa}"

shows "g: X;xXy — Y;XYe" using assms apply_funtype ZF_fun_from_total
by simp

A reformulation of cart_prod_fun above in a sligtly different notation.

lemma prod_fun:

assumes "f:X;—Xp" "g:X3—Xy"
shows "{{(x,y),(f‘x,g‘y)). (x,y)€X;xX3}:X1xX3—XaxXy"
proof -

have "{((x,y),{(f‘x,g‘y)). (x,y)€X1xX3} = {(p, (£ (fst(p)),g‘ (snd(p)))).
P € Xy ><X3}"
by auto
with assms show ?7thesis using cart_prod_fun by simp
qed

Product of two surjections is a surjection.

theorem prod_functions_surj:
assumes "fesurj(A,B)" "ge&surj(C,D)"
shows "{((al,a2),(f‘al,g‘a2)).(al,a2)cAxC} € surj(AxC,BxD)"
proof -
let 7h = "{((x, y), £°(x), g(y)) . (x,y) € A x C}"
from assms have fun: "f:A—B""g:C—D" unfolding surj_def by auto
then have pfun: "?h : A X C — B X D" using prod_fun by auto
{
fix b assume "beBxD"
then obtain bl b2 where "b=(b1,b2)" "bl€B" "b2€D" by auto
with assms obtain al a2 where "f‘(al)=bl" "g‘(a2)=b2" "aleA" "a2eC"

unfolding surj_def by blast
hence "((al,a2),(b1,b2)) € 7h" by auto
with pfun have "?h‘(al,a2)=(b1,b2)" using apply_equality by auto
with ‘b=(b1,b2)¢ ‘alcA‘ ‘a2eC‘ have "JacAxC. 7h‘(a)=b"

by auto
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} hence "VbeBxD. JacAxC. 7h‘(a) = b" by auto
with pfun show 7thesis unfolding surj_def by auto
qed

For a function of two variables created from functions of one variable as in
cart_prod_fun above, the inverse image of a cartesian product of sets is the
cartesian product of inverse images.

lemma cart_prod_fun_vimage: assumes "f;:X;—Y;" "fy:Xs—Yo" and
"g = {(p,(f1 (st (P)),f2¢(snd(p)))). p € Xy xXa}"
shows "g-‘“(A1xA3) = £1-°“(A1) X fo- < (Ag)"
proof -
from assms have "g: X;xXo — Y;xXYy" using cart_prod_fun
by simp
then have "g-‘ ‘(A1 xA3) = {p € X1xX2. g(p) € A;XAs}" using funcl_1_L15

by simp
with assms ‘g: X1 xXy — Y1XY2‘ show "g“‘(A1XA2) = fl“‘(Al) X fg"‘(Ag)"

using ZF_fun_from_tot_val funcl_1_L15 by auto
qed

For a function of two variables defined on X x Y, if we fix an x € X we
obtain a function on Y. Note that if domain(f) is X X Y, range(domain(£f))
extracts Y from X x Y.

definition
"FixlstVar(f,x) = {(y,f‘(x,y)). y € range(domain(£))}"

For every y € Y we can fix the second variable in a binary function f :
X XY — Z to get a function on X.

definition
"Fix2ndVar(f,y) = {(x,f‘(x,y)). x € domain(domain(f))}"

We defined FixlstVar and Fix2ndVar so that the domain of the function is
not listed in the arguments, but is recovered from the function. The next
lemma is a technical fact that makes it easier to use this definition.

lemma fix_var_fun_domain: assumes Al: "f : XxY — Z"
shows
"x€X — FixlstVar(f,x) = {{y,
"yeY — Fix2ndVar(f,y) {
proof -
from Al have I: "domain(f) = XxY" using funcl_1_L1 by simp
{ assume "xeX"
with I have "range(domain(f)) = Y" by auto
then have "FixlstVar(f,x) = {{y,f‘(x,y)). y € Y}"
using FixlstVar_def by simp
} then show "xe€X — FixlstVar(f,x) = {(y,f(x,y)). y € Y}"
by simp

“x,y)). ¥y € Y
(x,y)). x € X}"
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{ assume "yey"
with I have "domain(domain(f)) = X" by auto
then have "Fix2ndVar(f,y) = {(x,f‘(x,y)). x € X}"
using Fix2ndVar_def by simp
} then show "y€Y — Fix2ndVar(f,y) = {(x,f‘(x,y)). x € X}"
by simp
qed

If we fix the first variable, we get a function of the second variable.

lemma fix_1st_var_fun: assumes Al: "f : XXY — Z" and A2: "xe&X"
shows "FixlstVar(f,x) : Y — Z"
proof -
from A1 A2 have "VyeY. £(x,y) € Z"
using apply_funtype by simp
then have "{(y,f‘(x,y)). y € Y} : Y — Z"
using ZF_fun_from_total by simp
with A1 A2 show "FixlstVar(f,x) : Y — Z"
using fix_var_fun_domain by simp
qed

If we fix the second variable, we get a function of the first variable.

lemma fix_2nd_var_fun: assumes Al: "f : XxXY — Z" and A2: "yeY"
shows "Fix2ndVar(f,y) : X — 2"
proof -
from A1l A2 have "VxeX. £¢(x,y) € 2"
using apply_funtype by simp
then have "{(x,f‘(x,y)). x € X} : X — 2"
using ZF_fun_from_total by simp
with Al A2 show "Fix2ndVar(f,y) : X — 2"
using fix_var_fun_domain by simp
qed

What is the value of Fix1stVar (f,x) at y € Y and the value of Fix2ndVar (f,y)
at x € X77

lemma fix_var_val:
assumes Al: "f : XxY — Z" and A2: "xeX" ‘yey"
shows
"FixlstVar (f,x) ¢ (y)
"Fix2ndVar (f,y) ¢ (x)
proof -
let 7f; = "{{y,f(x,y)). y € Y}"
let 7f5 = "{(x,f(x,y)). x € X}"
from A1 A2 have I:
"FixlstVar(f,x) = 7£f;"
"Fix2ndVar (f,y) = 7fy"
using fix_var_fun_domain by auto
moreover from Al A2 have
"FixlstVar(f,x) : Y — Z"
"Fix2ndVar(f,y) : X — Z"

I
Fh b
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using fix_1st_var_fun fix_2nd_var_fun by auto
ultimately have "?f; : Y — Z" and "7f, : X — Z"
by auto
with A2 have "7f;‘(y) = £(x,y)" and "?f5°(x) = £(x,y)"
using ZF_fun_from_tot_val by auto
with I show

"FixlstVar(f,x) ‘(y) = £(x,y)"
"Fix2ndVar (f,y) ‘(x) = £(x,y)"
by auto

qed

Fixing the second variable commutes with restrictig the domain.

lemma fix_2nd_var_restr_comm:
assumes Al: "f : XxY — Z" and A2: "yeY" and A3: "X; C X"
shows "Fix2ndVar(restrict(f,X;xY),y) = restrict(Fix2ndVar(f,y),X;)"
proof -
let ?7g = "Fix2ndVar(restrict(f,X;xY),y)"
let ?h = "restrict(Fix2ndVar(f,y),X;)"
from A3 have I: "X;xY C XxY" by auto
with A1 have II: "restrict(f,X;xY) : X;xY — Z"
using restrict_type2 by simp
with A2 have "7g : X; — Z"
using fix_2nd_var_fun by simp
moreover
from A1 A2 have III: "Fix2ndVar(f,y) : X — Z"
using fix_2nd_var_fun by simp
with A3 have "7?h : X; — Z"
using restrict_type2 by simp
moreover
{ fix z assume A4: "z € X;"
with A2 I IT have "?7g‘(z) = f‘(z,y)"
using restrict fix_var_val by simp
also from A1 A2 A3 A4 have "f‘(z,y) = ?h‘(z)"
using restrict fix_var_val by auto
finally have "?g‘(z) = ?h‘(z)" by simp
} then have "Vz € X;. ?7g‘(z) = ?h‘(2)" by simp
ultimately show "?g = 7h" by (rule func_eq)
qed

The next lemma expresses the inverse image of a set by function with fixed
first variable in terms of the original function.

lemma fix_1st_var_vimage:

assumes Al: "f : XxY — Z" and A2: "xeX"

shows "FixlstVar(f,x)-‘‘(4) = {yeY. (x,y) € £-<“(A)}"
proof -

from assms have "FixlstVar(f,x)-¢‘(A) = {ye€Y. FixlstVar(f,x)‘(y) €
A"

using fix_1st_var_fun funcl_1_L15 by blast
with assms show ?7thesis using fix_var_val funcl_1_L15 by auto
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qed

The next lemma expresses the inverse image of a set by function with fixed
second variable in terms of the original function.

lemma fix_2nd_var_vimage:

assumes Al: "f : XxY — Z" and A2: "yeY"

shows "Fix2ndVar(f,y)-¢‘(A) = {x€X. (x,y) € £-<“(A)}"
proof -

from assms have I: "Fix2ndVar(f,y)-‘‘(A) = {x€X. Fix2ndVar(f,y) ‘ (x)
€ A"

using fix_2nd_var_fun funcl_1_L15 by blast

with assms show ?thesis using fix_var_val funcl_1_L15 by auto

qed

end

10 Binary operations

theory func_ZF imports funcl
begin

In this theory we consider properties of functions that are binary operations,
that is they map X x X into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f,g: X — R we define (f + g)(z) = f(z) + g(z).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it "lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X) we are defining f lifted to function space
over X as the binary function (a set of pairs) on the space F' = X — range(f)
such that the value of this function on pair (a, b) of functions on X is another
function ¢ on X with values defined by c¢(z) = f(a(zx),b(z)).

definition
Lift2FcnSpce (infix "{lifted to function space over}" 65) where
"f {lifted to function space over} X =

{({ p,{(x,£(fst(p) ‘ (x),snd(p) ‘(x))). x € X}).
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p € (X—range(f))x (X—range(£f))}"

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes Al: "f : YXY—=Y"
and A2: "p €(X—range(f))x (X—range(£))"
shows
"{{x,f(fst(p)  (x),snd(p) ‘ (x))). x € X} : X—range(f)"
proof -
have "VxeX. £ (fst(p)‘(x),snd(p)‘(x)) € range(f)"
proof
fix x assume "xeX"
let 7p = "(fst(p)‘ (x),snd(p) ‘ (x))"
from A2 ‘xeX‘ have
"fst(p) ‘(x) € range(£f)" "snd(p)‘(x) € range(f)"
using apply_type by auto
with A1 have "7p € yYxy"
using funcl_1_L5B by blast
with A1 have "(?p, £‘(?7p)) € f"
using apply_Pair by simp
with Al show
"f(?p) € range(f)"
using rangel by simp
qed
then show ?7thesis using ZF_fun_from_total by simp
qed

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:
assumes Al: "f : YXY—Y"
and A2: "p € (X—range(f))x (X—range(f))" and A3: "xeX"
and A4: "P = {(x,f(fst(p) ‘(x),snd(p) ‘(x))). x € X}"
shows "P‘(x) = f‘(fst(p)‘(x),snd(p)‘ (x))"
proof -
from A1 A2 have
"{{x,f(fst(p) ‘(x),snd(p) ‘(x))). x € X} : X — range(f)"
using func_ZF_1_L1 by simp
with A4 have "P : X — range(f)" by simp
with A3 A4 show "P‘(x) = f‘(fst(p)‘(x),snd(p) ‘ (x))"
using ZF_fun_from_tot_val by simp
qed

Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:
assumes "f : YxXY—Y"
and "F = f {lifted to function space over} X"
shows "F : (X—range(f)) X (X—range(f)) — (X—range(£f))"
using assms Lift2FcnSpce_def func_ZF_1_L1 ZF_fun_from_total
by simp
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The values of the lift are defined by the values of the liftee in the natural
way.

theorem func_ZF_1_L4:
assumes Al: "f : YXY—-Y"
and A2: "F = f {lifted to function space over} X"
and A3: "s:X—range(f)" "r:X—range(f)"
and A4: "xeX"
shows "(F'(s,r)) ‘(x) = £(s‘(x),r ' (x))"
proof -
let 7p = "(s,)"
let 7P = "{(x,f(fst(?p) ‘ (x),snd(?p) ‘ (x))). x € X}"
from A1 A3 A4 have
"f o YXY—Y" "?p € (X—range(f)) X (X—range(£f))"
"xeX" "?P = {(x,f(fst(?p) ‘(x),snd(7p) ‘(x))). x € X}"
by auto
then have "?P‘(x) = f‘(fst(?p) ‘ (x),snd(?p) ‘ (x))"
by (rule func_ZF_1_L2)
hence "?P‘(x) = £(s‘(x),r‘(x))" by auto
moreover have "?P = F‘(s,r)"
proof -
from A1 A2 have "F : (X—range(f)) x (X—range(f))— (X—range(£))"
using func_ZF_1_L3 by simp
moreover from A3 have "7p € (X—range(f))x (X—range(£f))"
by auto
moreover from A2 have
"F = {(p,{(x, £ (fst(p) ‘ (x),snd(p) ‘ (X))). x € X}).
p € (X—range(f))x (X—range(f))}"
using Lift2FcnSpce_def by simp
ultimately show 7thesis using ZF_fun_from_tot_val
by simp
qed
ultimately show "(F‘(s,r))‘(x) = £(s‘(x),r‘(x))" by auto
qed

10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

7 .77

Typically we say that a binary operation on a set (G is "associative” if
(x-y)-z==a-(y-2) for all z,y,z € G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation + or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P{x,y) to denote the value
of the operation P on a pair (x,y) € G x G.

definition

IsAssociative (infix "{is associative on}" 65) where
"P {is associative on} G = P : GXG—G A
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€ G.

VW x€eG Vyea. VvV z
) = PC {(x,PUy,z))) )"

CP (P ((x,y)),2)

A binary function f: X x X — Y is commutative if f{(x,y) = f(y,z). Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix "{is commutative on}" 65) where
"f {is commutative on} G = Vx€G. VyeG. £(x,y) = £(y,x)"

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:
assumes Al: "f : GXG—G"
and A2: "F = f {lifted to function space over} X"
and A3: "s : X—range(f)" "r : X—range(£f)"
and A4: "f {is commutative on} G"
shows "F‘(s,r) = F'(r,s)"
proof -
from A1 A2 have
"F : (X—range(f)) x (X—range(f))— (X—range(£))"
using func_ZF_1_L3 by simp
with A3 have
"F¢(s,r) : X—range(f)" and "F‘(r,s) : X—range(f)"
using apply_type by auto
moreover have
"WxeX. (F(s,r))‘(x) = (F(r,s)) ‘(x)"
proof
fix x assume "xeX"
from A1 have "range(f)CG"
using funcl_1_L5B by simp
with A3 ‘x€X‘ have "s‘(x) € G" and "r‘(x) € G"
using apply_type by auto
with A1 A2 A3 A4 ‘xeX‘ show
"(F(s,r))‘(x) = (F'(r,s)) ‘(x)"
using func_ZF_1_L4 IsCommutative_def by simp
qed
ultimately show 7thesis using fun_extension_iff
by simp
qed

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes "f : GXG—=G"
and "f {is commutative on} G"
and "F = f {lifted to function space over} X"
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shows "F {is commutative on} (X—range(f))"
using assms IsCommutative_def func_ZF_2_L1 by simp

The lift of an associative function is associative.

lemma func_ZF_2_L3:
assumes A2: "F = f {lifted to function space over} X"
and A3: "s : X—range(f)" "r : X—range(f)" "q : X—range(f)"
and A4: "f {is associative on} G"
shows "F‘(F‘(s,r),q) = F(s,F(r,q))"
proof -
from A4 A2 have
"F : (X—range(f)) x (X—range(f))— (X—range(f))"
using IsAssociative_def func_ZF_1_L3 by auto
with A3 have I:
"F‘(s,r) : X—range(f)"
"F(r,q) : X—range(f)"
"F(F‘(s,r),q) : X—range(f)"
"F(s,F‘(r,q)): X—range(f)"
using apply_type by auto
moreover have
"WxeX. (F(F'(s,r),q)) ‘(x) = (F(s,F(r,q)) ‘x)"
proof
fix x assume "xeX"
from A4 have "f:GxXG—G"
using IsAssociative_def by simp
then have "range(f)CG"
using funcl_1_L5B by simp
with A3 ‘xeX‘ have
"s(x) € G" "r‘(x) € G" "q‘(x) € G"
using apply_type by auto
with A2 T A3 A4 ‘xeX‘ ‘£:GXG—G‘ show
"(F(F(s,T), ) () = Fi(s,F(r,q)) ()"
using func_ZF_1_L4 IsAssociative_def by simp
qed
ultimately show ?7thesis using fun_extension_iff
by simp
qed

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes Al: "f {is associative on} G"
and A2: "F = f {lifted to function space over} X"
shows "F {is associative on} (X—range(f))"
proof -
from A1 A2 have
"F : (X—range(f)) x (X—range(f))— (X—range(f))"
using IsAssociative_def func_ZF_1_L3 by auto
moreover from Al A2 have
"Ws € X—range(f). V r € X—range(f). Vq € X—range(f).
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F(F<(s,r),q) = F*(s,F(r,q)"
using func_ZF_2_L3 by simp
ultimately show 7thesis using IsAssociative_def
by simp
qed

10.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes Al: "f:XxX—Y" and A2: "ACX"
and A3: "f {is commutative on} X"
shows "restrict(f,AxA) {is commutative on} A"
proof -
{ fix x y assume "x€A" and "y€A"
with A2 have "xe€X" and "yeX" by auto
with A3 ‘x€A‘ ‘yeA‘ have
"restrict(f,AxA) ‘(x,y) = restrict(f,AxA) ‘(y,x)"
using IsCommutative_def restrict_if by simp }
then show 7thesis using IsCommutative_def by simp
qged

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix "{is closed under}" 65) where
"A {is closed under} f = Vx€A. Vye€A. £(x,y) € A"

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes Al: "f {is associative on} X"
and A2: "ACX" and A3: "A {is closed under} f"
and A4: "xe€A" "yeA" "zeA"
and A5: "g = restrict(f,AxA)"
shows "g‘(g‘(x,y),z) = g*(x,g (y,2))"

proof -
from A4 A2 have I: "xeX" "yeX" "zeX"

by auto
from A3 A4 A5 have

"g (g (x,y),2z) = £ (x,y),2)"

"g‘(x,g(y,2)) = £°(x,£(y,2))"

using IsOpClosed_def restrict_if by auto
moreover from A1 I have

"E(E(x,y),2) = £ (x, 2 (y,2))"

using IsAssociative_def by simp
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ultimately show 7thesis by simp
qed

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes Al: "f {is associative on} X"
and A2: "ACX" and A3: "A {is closed under} f"
shows "restrict(f,AxA) {is associative on} A"

proof -
let 7g = "restrict(f,AxA)"
from A1 have "f:XxX—X"

using IsAssociative_def by simp
moreover from A2 have "AxA C XxX" by auto
moreover from A3 have "Vp € AxA. 7g‘(p) € A"
using IsOpClosed_def restrict_if by auto
ultimately have "7g : AxA—A"
using funcl_2_L4 by simp
moreover from Al A2 A3 have
"WV x €A VyeA V zel
7g‘(7g‘ (x,y),2) = 7g( x,78"(y,2))"
using func_ZF_4_L2 by simp
ultimately show ?thesis
using IsAssociative_def by simp
qed

The essential condition to show that if a set A is closed with respect to an

operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes "A {is closed under} f"
and "ACB" and "xeA" '"yeA" and "g = restrict(f,BxB)"
shows "g‘(x,y) € A"
using assms IsOpClosed_def restrict by auto

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:

assumes Al: "A {is closed under} f"

and A2: "ACB"

shows "A {is closed under} restrict(f,BxB)"
proof -

let ?7g = "restrict(f,BxB)"

from A1 A2 have "Vxe€A. VyeA. 7g‘(x,y) € A"

using func_ZF_4_14 by simp

then show 7thesis using IsOpClosed_def by simp

qed

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.
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lemma func_ZF_4_16:
assumes "A {is closed under} f"
and "B {is closed under} f"
and "x € ANB" "y& ANB"
shows "f‘(x,y) € ANB" using assms IsOpClosed_def by auto

Intersection of sets that are closed with respect to an operation is closed
under the operation.

lemma func_ZF_4_L7:
assumes "A {is closed under} f"
"B {is closed under} f"
shows "ANB {is closed under} f"
using assms IsOpClosed_def by simp

10.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X — X defined by C(f,g) = f o g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter 0. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of ((X —
X)X (X = X)) x (X — X).

We define the notion of composition on the set X as the binary operation
on the function space X — X that takes two functions and creates the their
composition.

definition
"Composition(X) =
{(p,fst(p) 0 snd(p)). p € X=X xX—=X)}"

Composition operation is a function that maps (X — X) x (X — X) into
X = X.

lemma func_ZF_5_L1: shows "Composition(X) : (X—X)x(X—X)—E-=X)"
using comp_fun Composition_def ZF_fun_from_total by simp

The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes "f:X—X" and "g:X—X"
shows "Composition(X)‘(f,g) = £ 0 g"
proof -
from assms have
"Composition(X) : (X—X)x (X—=X)—=>EX—=X)"
"(f,g) € E=X)xE—="
"Composition(X) = {(p,fst(p) 0 snd(p)). p € (X—=X)x(X—=X)}"
using func_ZF_5_L1 Composition_def by auto
then show "Composition(X)‘(f,g) = £ 0 g"
using ZF_fun_from_tot_val by auto
qed
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What is the value of a composition on an argument?

lemma func_ZF_5_L3: assumes "f:X—X" and "g:X—X" and "xeX"
shows "(Composition(X)‘(f,g))‘(x) = £(g‘(x))"
using assms func_ZF_5_L2 comp_fun_apply by simp

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes Al: "f:X—X" "g:X—X" "h:X—X"
and A2: "C = Composition(X)"
shows "C‘(C‘(f,g),h) = C( £,C°(g,h))"
proof -
from A2 have "C : ((X—=X)xX—=X))—=>E-=X)"
using func_ZF_5_L1 by simp
with A1 have I:
"C(f,g) @ X—oX"
"C(g,h) : X—X"
"CY(C(f,g),h) : X—X"
"C‘( £,C¢(g,h)) : X—X"
using apply_funtype by auto
moreover have
"W ox € X. CYC(E,g),h) (x) = C(£,C°(g,h))  (x)"
proof
fix x assume "xeX"
with A1 A2 T have
"C(C(f,g),h) ¢ (x) = (g IN"
"C( £,C(g,h)) (x) = £°(g (b (x)))"
using func_ZF_5_L3 apply_funtype by auto
then show "C‘(C‘(f,g),h) (x) = C*( £,C°(g,h))‘ (x)"
by simp
qed
ultimately show 7thesis using fun_extension_iff by simp
qed

Composition is an associative operation on X — X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows "Composition(X) {is associative on} (X—X)"
proof -
let ?C = "Composition(X)"
have "VfeX—X. VgeX—X. VheX—X.
?C(7C*(f,g),h) = 7C(f,7C*(g,h))"
using func_ZF_5_14 by simp
then show ?7thesis using func_ZF_5_L1 IsAssociative_def
by simp
qed

10.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.

99



A function that maps every point to itself is the identity on its domain.

lemma indentity_fun: assumes Al: "f:X—Y" and A2:"VxeX. f‘(x)=x"
shows "f = id(X)"
proof -
from assms have "f:X—Y" and "id(X) :X—X" and "VxeX. £(x) = id(X) ‘(x)"
using id_type id_conv by auto
then show 7thesis by (rule func_eq)
qed

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes Al: "f : X—X"
shows "Composition(X) ‘(f,id(X)) = f"
"Composition(X) ‘(id(X),f) = "
proof -
have "Composition(X) : (X—X) X (X—=X)—E-=X)"
using func_ZF_5_L1 by simp

with A1 have "Composition(X) ‘(id(X),f) : X—X"
"Composition(X) ‘(f,id(X)) : X—X"
using id_type apply_funtype by auto

moreover note Al

moreover from Al have
"WVx€X. (Composition(X) ‘(id(X),f)) ‘(x) = £ (x)"
"Wx€X. (Composition(X)‘(f,id(X))) ‘(x) = £ (x)"
using id_type func_ZF_5_L3 apply_funtype id_conv
by auto

ultimately show "Composition(X) ‘(id(X),f) = f"
"Composition(X) ‘(f,id(X)) = £"
using fun_extension_iff by auto

qed

An intuitively clear, but surprsingly nontrivial fact:identity is the only func-
tion from a singleton to itself.

lemma singleton_fun_id: shows "({x} — {x}) = {id({x})}"
proof
show "{id({x})} € ({x} — {xH"
using id_def by simp
{ let 7g = "id({zx})"
fix f assume "f : {x} — {x}"
then have "f : {x} — {x}" and "?7g : {x} — {x}"
using id_def by auto
moreover from ‘f : {x} — {x}‘ have "Vx € {x}. £‘(x) = 7g‘(x)"
using apply_funtype id_def by auto
ultimately have "f = 7g" by (rule func_eq)
} then show "({x} — {x}) C {id({x})}" by auto
qed

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows "bij({x},{x}) = {id({z})}"
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proof
show "{id({x})} C bij({x},{x})" using id_bij
by simp
{ fix £ assume "f € bij({x},{x}H)"
then have "f : {x} — {x}" using bij_is_fun

by simp
then have "f € {id({x})}" using singleton_fun_id
by simp
} then show "bij({zx},{x}) C {id({x})}" by auto

qed

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes Al: "f:X—X" and
A2: "peX" and A3: "f‘(p) = p" and
A4: "restrict(f, X-{p}) = id&X-{pH"
shows "f = id(X)"
proof -
from A1 have "f: X—X" and "id(X) : X—X"
using id_def by auto
moreover
{ fix x assume "xeX"
{ assume "x € X-{p}"
then have "f‘(x) = restrict(f, X-{p}) ‘(x)"
using restrict by simp
with A4 ‘x € X-{p}‘ have "f‘(x) = x"
using id_def by simp }
with A2 A3 ‘xeX‘ have "f‘(x) = x" by auto
} then have "VxeX. f£(x) = id(X)‘(x)"
using id_def by simp
ultimately show "f = id(X)" by (rule func_eq)
qed

10.6 Lifting to subsets

Suppose we have a binary operation f : X x X — X written additively as
f{x,y) = x +y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+ B ={x+y:xz € A,y € B}. This new
operation which we will call ” f lifted to subsets” inherits many properties of
f, such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p € Pow(X) x Pow(X), say p = (A, B), where A, B C X. Then we assign
this pair of sets the set {f(z,y):x € A,y € B} ={f(2'): 2’ € Ax B} The
set on the right hand side is the same as the image of A x B under f. In the
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definition we don’t use A and B symbols, but write fst(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
components of an ordered pair p. See the lemma lift_subsets_explained
for a more intuitive notation.

definition
Lift2Subsets (infix "{lifted to subsets of}" 65) where
"f {lifted to subsets of} X =
{{p, £°“(fst(p)xsnd(p))). p € Pow(X) xPow(X)}"

The lift to subsets defines a binary operation on the subsets.

lemma 1ift_subsets_binop: assumes Al: "f : X X X — Y"
shows "(f {lifted to subsets of} X) : Pow(X) X Pow(X) — Pow(Y)"
proof -
let 7F = "{(p, £°“(fst(p)xsnd(p))). p € Pow(X) xPow(X)}"
from A1 have "Vp € Pow(X) x Pow(X). f¢‘(fst(p)xsnd(p)) € Pow(Y)"
using funcl_1_L6 by simp
then have "?F : Pow(X) X Pow(X) — Pow(Y)"
by (rule ZF_fun_from_total)
then show 7thesis unfolding Lift2Subsets_def by simp
qed

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F*(A,B) = {£(x,y). x € A, y
€ B}, but Isabelle/ZF does not allow such syntax.

lemma 1ift_subsets_explained: assumes Al: "f : XxX — Y"
and A2: "A C X" "B C X" and A3: "F = f {lifted to subsets ofl} X"
shows

"F¢(A,B) C Y" and

"F(A,B) = £°“(AxB)"

"F'(A,B) = {£(p). p € AxB}"

"F(A,B) = {£°(x,y) . (x,y) € AXB}"
proof -

let 7p = "(A,B)"

from assms have
I: "F : Pow(X) X Pow(X) — Pow(Y)" and "?p € Pow(X) X Pow(X)"
using lift_subsets_binop by auto

moreover from A3 have "F = {(p, £‘‘(fst(p)xsnd(p))). p € Pow(X) xPow(X)}"
unfolding Lift2Subsets_def by simp

ultimately show "F‘(A,B) = f£‘‘(AXB)"
using ZF_fun_from_tot_val by auto

also

from A1 A2 have "AxXB C XxX" by auto

with A1 have "f‘‘(AxB) = {f‘(p). p € AxB}"
by (rule func_imagedef)

finally show "F‘(A,B) = {£(p) . p € AXB}" by simp

also

have "VxeA. Vy € B. £(x,y) = £(x,y)" by simp

then have "{f‘(p). p € AxB} = {f‘(x,y). (x,y) € AXB}"
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by (rule ZF1_1_L4A)
finally show "F‘(A,B) = {f‘(x,y) . (x,y) € AxB}"
by simp
from A2 I show "F‘(A,B) C Y" using apply_funtype by blast
qed

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma 1ift_subset_suff: assumes Al: "f : X x X — Y" and
A2: "A C X" "B C X" and A3: "xe€A" "yeB" and
Ad: "F = f {lifted to subsets of} X"
shows "f‘(x,y) € F(A,B)"

proof -
from A3 have "f‘(x,y) € {f‘(p) . p € AXB}" by auto
moreover from Al A2 A4 have "{f‘(p). p € AxB} = F(4,B) "

using lift_subsets_explained by simp

ultimately show "f‘(x,y) € F‘(A,B)" by simp

qed

A kind of converse of 1ift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma 1ift_subset_nec: assumes Al: "f : X X X — Y" and
A2: "A C X" "B C X" and
A3: "F = f {lifted to subsets of} X" and
Ad: "z € F‘(A,B>"
shows "Jdx y. x€A A y€B A z = £(x,y)"
proof -
from A1 A2 A3 have "F‘(A,B) = {£‘(p). p € AxB}"
using lift_subsets_explained by simp
with A4 show ?7thesis by auto
qed

Lifting to subsets inherits commutativity.

lemma lift_subset_comm: assumes Al: "f : X X X — Y" and
A2: "f {is commutative on} X" and
A3: "F = f {lifted to subsets of} X"
shows "F {is commutative on} Pow(X)"
proof -
have "VA € Pow(X). VB € Pow(X). F(A,B) = F*(B,A)"
proof -
{ fix A assume "A € Pow(X)"
fix B assume "B € Pow(X)"
have "F(A,B) = F(B,A)"
proof -
have "Wz € F‘(A,B). z € F(B,A)"
proof
fix z assume I: "z € F‘(A,B)"
with A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)‘ have
"Jx y. x€EA A yEB A z = £(x,y)"
using lift_subset_nec by simp
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then obtain x y where "x€A" and "yeB" and "z = £(x,y)"
by auto
with A2 ‘A € Pow(X)¢ ‘B € Pow(X)‘¢ have "z = f‘(y,x)"
using IsCommutative_def by auto
with A1 A3 I ‘A € Pow(X)¢ ‘B € Pow(X)‘¢ ‘x€A¢ ‘yeB°
show "z € F‘(B,A)" using lift_subset_suff by simp
qged
moreover have "Vz € F‘(B,A). z € F‘(4,B)"
proof
fix z assume I: "z € F‘(B,A)"
with A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)‘ have
"Jx y. x€B A yEA A z = £9(x,y)"
using lift_subset_nec by simp
then obtain x y where "x€B" and "yeA" and "z = £f‘(x,y)"
by auto
with A2 ‘A € Pow(X)‘ ‘B € Pow(X)‘ have "z = £‘(y,x)"
using IsCommutative_def by auto
with A1 A3 I ‘A € Pow(X)‘ ‘B € Pow(X)‘ ‘x€B‘ ‘y€Af
show "z € F‘(A,B)" using lift_subset_suff by simp

qed
ultimately show "F‘(A,B) = F(B,A)" by auto
qged
} thus 7thesis by auto
qed

then show "F {is commutative on} Pow(X)"
unfolding IsCommutative_def by auto
qed

Lifting to subsets inherits associativity. To show that F'((A, B)C) = F(A, F(B,C))
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma lift_subset_assoc: assumes Al: "f : X x X — X" and
A2: "f {is associative on} X" and
A3: "F = f {lifted to subsets ofl} X"
shows "F {is associative on} Pow(X)"
proof -
from A1 A3 have "F : Pow(X)xPow(X) — Pow(X)"
using lift_subsets_binop by simp
moreover have "VA € Pow(X).VB € Pow(X). VC € Pow(X).
F(F‘(A,B),C) = F*(A,F‘(B,C))"
proof -
{fix ABC
assume "A € Pow(X)" "B € Pow(X)" "C € Pow(X)"
have "F(F‘(A,B),C) C F(A,F‘(B,C))"
proof
fix z assume I: "z € F(F(A,B),C)"
from A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)°
have "F‘(A,B) € Pow(X)"
using lift_subsets_binop apply_funtype by blast
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with A1 A3 ‘C € Pow(X)‘ I have
"Jx y. x € F*(A,B) Ay € C A z=1x,y)"
using 1lift_subset_nec by simp
then obtain x y where
II: "x € F'(A,B)" and "y € C" and III: "z = f£‘(x,y)"
by auto
from A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)‘ II have
"I st.s€AANLtEBAZX=LI(s,t)"
using lift_subset_nec by auto
then obtain s t where "s€A" and "teB" and "x = f‘(s,t)"
by auto
with A2 ‘A € Pow(X)¢ ‘B € Pow(X)‘ ‘C € Pow(X)‘ III
‘s€A¢ ‘teB¢ ‘yeC‘ have IV: "z = £‘(s, £°(t,y))"
using IsAssociative_def by blast
from A1 A3 ‘B € Pow(X)¢ ‘C € Pow(X)‘ ‘teB¢ ‘yeCf
have "f‘(t,y) € F*(B,C)" using lift_subset_suff by simp
moreover from Al A3 ‘B € Pow(X)¢ ‘C € Pow(X)°
have "F‘(B,C) C X" using lift_subsets_binop apply_funtype
by blast
moreover note Al A3 ‘A € Pow(X)‘¢ ‘s€A‘ IV
ultimately show "z € F‘(A,F‘(B,C))"
using 1lift_subset_suff by simp
qged
moreover have "F‘(A,F‘(B,C)) C F‘(F‘(A,B),C)"
proof
fix z assume I: "z € F(A,F(B,C))"
from A1 A3 ‘B € Pow(X)¢ ‘C € Pow(X)¢
have "F‘(B,C) € Pow(X)"
using lift_subsets_binop apply_funtype by blast
with A1 A3 ‘A € Pow(X)‘ I have
"Jx y. x € ANy € F(B,C) Az =1fx,y)"
using 1lift_subset_nec by simp
then obtain x y where
"x € A" and II: "y € F*(B,C)" and III: "z = f(x,y)"
by auto
from Al A3 ‘B € Pow(X)‘ ‘C € Pow(X)‘ II have
"3 st.s€EBAtLtECAY=E(s,t)"
using lift_subset_nec by auto
then obtain s t where "s€B" and "teC" and "y = f‘(s,t)"
by auto
with III have "z = £‘(x,f‘(s,t))" by simp
moreover from A2 ‘A € Pow(X)¢ ‘B € Pow(X)¢ ‘C € Pow(X)‘
‘x€A¢ ‘seB¢ ‘teC have "f(f‘(x,s),t) = £(x,f(s,t))"
using IsAssociative_def by blast
ultimately have IV: "z = £(f‘(x,s),t)" by simp
from Al A3 ‘A € Pow(X)‘ ‘B € Pow(X)¢ ‘x€A¢ ‘seB¢
have "f‘(x,s) € F*(A,B)" using lift_subset_suff by simp
moreover from A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)°
have "F‘(A,B) C X" using lift_subsets_binop apply_funtype
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by blast
moreover note Al A3 ‘C € Pow(X)°
ultimately show "z € F‘(F‘(A4,B),C)"
using lift_subset_suff by simp
qed
ultimately have "F‘(F‘(A,B),C) =
} thus 7thesis by auto
qed
ultimately show 7thesis unfolding IsAssociative_def
by auto
qed

‘teC’ IV

F‘(A,F¢(B

,C))"

by auto

10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a-(b+c¢) = a-b+a-c and (b+c)-a = b-a+c-a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClass1 theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
"Ilestrlbutlve(X AM) = ( X.VbeX.VceX.
M‘(a,A‘(b,c)) = A“(M‘(a,b),M* < >>
M (A“(b,c),a) = A°(M‘(b,a),M (c,a) )"

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:
assumes Al: "IsDistributive(X,A,M)"

and A2: "YCX"
and A3: "Y {is closed under} A" "Y {is closed under} M"
and A4: "A, = restrict(A,YXY)" "M, = restrict(M,YxY)"
and A5: "a€Y" ‘"bey" "CGY"
shows "M, ‘( a,A.“(b,c) ) = A.°( M.“(a,b),M,“(a,c) ) A
M. A(b,c),a ) = A( M-“(b,a), M.“(c,a) )"
proof -
from A3 A5 have "A‘(b,c) € Y" "M‘(a,b) € Y" "M‘(a,c) € Y"
"M‘(b,a) € Y" "M‘(c,a) € Y" using IsOpClosed_def by auto
with A5 A4 have
"A,(b,c) € Y" "M.‘(a,b) € Y' "M,.‘(a,c) € Y"
"M, ‘(b,a) € Y" "M,‘(c,a) € Y"
using restrict by auto

with A1 A2 A4 A5
using restrict

show 7thesis
IsDistributive_def by auto
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qed

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes "IsDistributive(X,A,M)"
and "YCX"
and "Y {is closed under} A"
"Y {is closed under} M"
and "A, = restrict(A,YxY)" "M, = restrict(M,YxY)"
shows "IsDistributive(Y,A,,M,)"
proof -
from assms have "VacY.VbeY.Vcey.
M. ‘( a,A.“(b,c) ) = A.( M.“(a,b),M,“(a,c) ) A
M-{ A.“(b,c),a ) = A.( M,“(b,a),M.“(c,a))"
using func_ZF_7_L1 by simp
then show 7thesis using IsDistributive_def by simp
qged

end

11 More on functions

theory func_ZF_1 imports Order Order_ZF_la func_ZF
begin

In this theory we consider some properties of functions related to order
relations

11.1 Functions and order
This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes "f:X—Y" and "ACX" and "VxeA. (L,f°(x)) € "
shows "IsBoundedBelow(f‘‘(A),r)"
proof -
from assms have "Vy € £<“(4). (L,y) € "
using func_imagedef by simp
then show "IsBoundedBelow(f‘‘(A),r)"
by (rule Order_ZF_3_L9)
qed
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If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:
assumes "f:X—Y" and "ACX" and "VxeA. (f‘(x),U) € r"
shows "IsBoundedAbove(f‘‘(A),r)"
proof -
from assms have "Vy € £°(A). (y,U) € r"
using func_imagedef by simp
then show "IsBoundedAbove(f‘‘(A),r)"
by (rule Order_ZF_3_L10)
qed

Identity is an order isomorphism.

lemma id_ord_iso: shows "id(X) € ord_iso(X,r,X,r)"
using id_bij id_def ord_iso_def by simp

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:
shows "ord_iso({x},r,{x},r) = {id({z}H}"
using id_ord_iso ord_iso_def single_bij_id
by auto

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
between (A, r) and (B, R) we can not conclude that R is antisymmetric (we
can only show that RN (B x B) is).

lemma max_image_ord_iso:
assumes Al: "antisym(r)" and A2: "antisym(R)" and
A3: "f € ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)"
shows "HasAmaximum(R,B)" and "Maximum(R,B) = f‘(Maximum(r,A))"
proof -
let ?M = "Maximum(r,A)"
from A1 A4 have "7M € A" using Order_ZF_4_L3 by simp
from A3 have "f:A—B" using ord_iso_def bij_is_fun
by simp
with ‘?M € A¢ have I: "f‘(?M) € B"
using apply_funtype by simp
{ fix y assume "y € B"
let ?x = "converse(f) ‘ (y)"
from A3 have "converse(f) € ord_iso(B,R,A,r)"
using ord_iso_sym by simp
then have "converse(f): B — A"
using ord_iso_def bij_is_fun by simp
with ‘y € B‘ have "7x € A"
by simp
with A1 A3 A4 ‘?x € A¢ ‘?M € A¢ have "(£(?x), £<(7M)) € R"
using Order_ZF_4_L3 ord_iso_apply by simp
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with A3 ‘y € B‘ have "(y, £(?M)) € R"
using right_inverse_bij ord_iso_def by auto

} then have II: "Vy € B. (y, £°(?M)) € R" by simp
with A2 I show "Maximum(R,B) = f¢(?M)"

by (rule Order_ZF_4_L14)
from I II show "HasAmaximum(R,B)"

using HasAmaximum_def by auto

qed

Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:
assumes "antisym(r)" and "f € ord_iso(A,r,A,r)"
and "HasAmaximum(r,A)"
shows "Maximum(r,A) = f‘(Maximum(r,A))"
using assms max_image_ord_iso by blast

If two sets are order isomorphic and we remove = and f(x), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "a € A"
shows "restrict(f,A-{a}) € ord_iso(A-{a},r,B-{f‘(a)},R)"
proof -
let ?fy = "restrict(f,A-{a})"
have "A-{a} C A" by auto
with A1 have "?f; € ord_iso(A-{a},r,f‘‘(A-{a}),R)"
using ord_iso_restrict_image by simp
moreover
from Al have "f € inj(A,B)"
using ord_iso_def bij_def by simp
with A2 have "f‘‘(A-{a}) = £<“(A) - £<‘{a}"
using inj_image_dif by simp
moreover from Al have "f‘‘(A) = B"
using ord_iso_def bij_def surj_range_image_domain
by auto
moreover
from A1 have "f: A—B"
using ord_iso_def bij_is_fun by simp
with A2 have "f‘‘{a} = {f‘(a)}"
using singleton_image by simp
ultimately show 7thesis by simp
qed

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:
assumes Al: "antisym(r)" and "f € ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)" and A5: "M = Maximum(r,A)"
shows "restrict(f,A-{M}) € ord_iso(A-{M}, r, B-{f‘(M)},R)"
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using assms Order_ZF_4_L3 ord_iso_rem_point by simp

Lemma about extending order isomorphisms by adding one point to the
domain.

lemma ord_iso_extend: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "My ¢ A" "Mp ¢ B" and
A3: "VacA. (a, My) € r" "VbeB. (b, Mg) € R" and
A4: "antisym(r)" "antisym(R)" and
AB: "(M4,My) € T +— (Mp,Mp) € R"
shows "f U {( M4,Mp)} € ord_iso(AU{M4} ,r,BU{Mp} ,R)"
proof -
let 7g = "f U {( Ma,Mp)}"
from A1 A2 have
"?g : AU{Mua} — BU{Mp}" and
I: "VxehA. 7g(x) = £°(x)" and II: "?7g‘(My) = Mp"
using ord_iso_def bij_def inj_def funcl_1_L11D
by auto
from A1 A2 have "7g € bij(AU{Mal},BU{Mp}) "
using ord_iso_def bij_extend_point by simp
moreover have "Vx € AU{My}. V y € AU{M4}.
(x,y) € r +— (7g°x), 7g°(y)) € R"
proof -
{ fix xy
assume "x € AU{Ma}" and "y € AU{Mu}"
then have "x€A Ny € AV x€A Ny =My V
x=Ma ANy€AV=Mg ANy=DMy"
by auto
moreover
{ assume "x€A Ay € A"
with A1 I have "(x,y) € r +— (?7g‘(x), 7g‘(y)) € R"
using ord_iso_def by simp }
moreover
{ assume "x€A A y = My"
with A1 A3 I II have "(x,y) € r «+— (?g‘(x), 7g‘(y)) € R"
using ord_iso_def bij_def inj_def apply_funtype
by auto }
moreover
{ assume "x = My Ay € A"
with A2 A3 A4 have "(x,y) ¢ r"
using antisym_def by auto
moreover
{ assume A6: "(7g‘(x), 7g‘(y)) € R"
from A1 I IT ‘x = Mg Ay € A¢ have
III: "?g‘(y) € B" "7g‘(x) = Mp"
using ord_iso_def bij_def inj_def apply_funtype
by auto
with A3 have "(?g‘(y), 7g‘(x)) € R" by simp
with A4 A6 have "7g‘(y) = 7g‘(x)" using antisym_def
by auto
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with A2 IIT have False by simp
} hence "(7g‘(x), 7g‘(y)) ¢ R" by auto
ultimately have "(x,y) € r «+— (?7g‘(x), ?7g‘(y)) € R"
by simp }
moreover
{ assume "x = My Ay = My"
with A5 II have "(x,y) € r +— (?7g‘(x), ?g‘(y)) € R"
by simp }
ultimately have "(x,y) € r +— (?7g‘(x), 7g‘(y)) € R"
by auto
} thus 7thesis by auto
qed
ultimately show 7thesis using ord_iso_def
by simp
qed

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.

lemma rem_max_ord_iso:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "HasAmaximum(r,X)" "HasAmaximum(R,Y)"
"ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) # O"
shows "ord_iso(X,r,Y,R) # 0"
proof -
let "My = "Maximum(r,X)"
let 74 = "X - {7Mu}"
let ?Mp = "Maximum(R,Y)"
let 7B = "Y - {?Mp}"
from A2 obtain f where "f € ord_iso(?A,r,?B,R)"
by auto
moreover have "?My ¢ 7A" and "?Mp ¢ ?7B"
by auto
moreover from A1 A2 have
"Vace?A. (a,?My) € r" and "Vbe?B. (b,?Mp) € R"
using IsLinOrder_def Order_ZF_4_L3 by auto
moreover from Al have "antisym(r)" and "antisym(R)"
using IsLinOrder_def by auto
moreover from Al A2 have "(?Mjy,?My) € r <— (7Mp,7Mp) € R"
using IsLinOrder_def Order_ZF_4_L3 IsLinOrder_def
total_is_refl refl_def by auto
ultimately have
"f U {( ?M4,?Mp)} € ord_iso(?AU{?Ms} ,r,?BU{7Mp} ,R)"
by (rule ord_iso_extend)
moreover from A1 A2 have
"PAU{7M4} = X" and "?BU{?Mp} = Y"
using IsLinOrder_def Order_ZF_4_L3 by auto
ultimately show "ord_iso(X,r,Y,R) # O"
using ord_iso_extend by auto
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qed

11.2 Projections in cartesian products
In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X =Y x {y} (a "slice”) and Y. We will
call this the SliceProjection(Yx{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
"SliceProjection(X) = {(p,fst(p)). p € X }"

A slice projection is a bijection between X x {y} and X.

lemma slice_proj_bij: shows
"SliceProjection(Xx{y}): Xx{y} — X"
"domain(SliceProjection(Xx{y})) = Xx{y}"
"WpeXx{y}. SliceProjection(Xx{y})‘(p) = fst(p)"
"SliceProjection(Xx{y}) € bij (Xx{y},X)"
proof -
let 7P = "SliceProjection(Xx{y})"
have "Vp € Xx{y}. fst(p) € X" by simp
moreover from this have
"{p,fst(P)). p € Xx{y} } : Xx{y} — X"
by (rule ZF_fun_from_total)
ultimately show
I: "?P: Xx{y} — X" and II: "VpeXx{y}. 7P‘(p) = fst(p)"
using ZF_fun_from_tot_val SliceProjection_def by auto
hence
"Wa € Xx{y}. V b € Xx{y}. ?P‘(a) = ?P‘(b) — a=b"
by auto
with I have "7P € inj(Xx{y},X)" using inj_def
by simp
moreover from II have "VxeX. dpeXx{y}. 7P‘(p) = x"
by simp
with I have "?P € surj(Xx{y},X)" using surj_def
by simp
ultimately show "?P € bij(Xx{y},X)"
using bij_def by simp
from I show "domain(SliceProjection(Xx{y})) = Xx{y}"
using funcl_1_L1 by simp
qed

11.3 Induced relations and order isomorphisms

When we have two sets X,Y, function f : X — Y and a relation R on
Y we can define a relation r on X by saying that x r y if and only if
f(x) R f(y). This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
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the case when R is an order relation and f is a bijection. The standard
Isabelle’s Order theory defines the notion of a space of order isomorphisms
between two sets relative to a relation. We expand that material proving
that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f: X = Y
the InducedRelation(f,R).

definition
"InducedRelation(f,R) =
{p € domain(f)xdomain(f). (f‘(fst(p)),f‘(snd(p))) € R}"

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:
assumes "(x,y) € InducedRelation(f,R)"
shows "(f‘(x),f‘(y)) € R"
using assms InducedRelation_def by simp

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes "f:A—B" and
"xeA" "yeA" and "(f(x),f‘(y)) € R
shows "(x,y) € InducedRelation(f,R)"
using assms funcl_1_L1 InducedRelation_def by simp

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:
assumes "f € ord_iso(A,r,B,R)" and
"(£4(x),£(y)) € R" and "x€A" "yeA"
shows "(x,y) € "
using assms ord_iso_def by simp

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes "R C BxB" and "f:A—B"
shows "InducedRelation(f,R) C AxA"
using assms funcl_1_L1 InducedRelation_def
by auto

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes Al: "f € bij(A,B)"
shows "f € ord_iso(A,InducedRelation(f,R),B,R)"
proof -
let ?r = "InducedRelation(f,R)"
{ fix x y assume A2: "x€A" ‘"yeA"
have "(x,y) € 7r +— (f(x),f‘(y)) € R"
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proof
assume "(x,y) € ?r" then show "(f‘(x),f‘(y)) € R"
using def_of_ind_relA by simp
next assume "(f‘(x),f‘(y)) € R"
with A1 A2 show "(x,y) € 7r"
using bij_is_fun def_of_ind_relB by blast
qed }
with A1 show "f € ord_iso(A,InducedRelation(f,R),B,R)"
using ord_isoI by simp
qed

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" and A3: "antisym(R)"
shows "antisym(r)"
proof -
{fix xy
assume A4: "(x,y) € r" "(y,x) € r"
from A1 have "f € inj(4,B)"
using ord_iso_is_bij bij_is_inj by simp
moreover
from A1 A2 A4 have
"(f(x), £°(y)) € R" and "(f‘(y), £°(x)) € R"
using ord_iso_apply by auto
with A3 have "f‘(x) = £°(y)" by (rule Foll_L4)
moreover from A2 A4 have "xc€A" ‘"yeA" by auto
ultimately have "x=y" by (rule inj_apply_equality)
} then have "Vx y. (x,y) € r A (y,x) € T — x=y" by auto
then show "antisym(r)" using imp_conj antisym_def
by simp
qed

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AXA" and A3: "trans(R)"
shows "trans(r)"
proof -
{fixxyz
assume A4: "(x, y) € " "(y, z) € "
note Al
moreover
from A1 A2 A4 have
"E(x), ()Y € R A {(£°(y), £°(=2)) € R"
using ord_iso_apply by auto
with A3 have "(f‘(x),f(z)) € R" by (rule Foll_L3)

moreover from A2 A4 have "x€A" "zeA" by auto
ultimately have "(x, z) € r" using ord_iso_apply_conv
by simp

} then have "V xy z. (x, y) €er Ay, z) €r — (x, z) € r"
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by blast
then show "trans(r)" by (rule Foll_L2)
qed

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" and A3: "R {is total on} B"
shows "r {is total on} A"
proof -
{ fix xy
assume "x€A" "yeA" "(x,y) ¢ r"
with A1 have "(f‘(x),f‘(y)) ¢ R" using ord_iso_apply_conv
by auto
moreover
from A1 have "f:A—B" using ord_iso_is_bij bij_is_fun
by simp
with A3 ‘xeA¢ ‘ye€A‘ have
"Ex),E(y)) € RV (f(y,f(x)) € R"
using apply_funtype IsTotal_def by simp
ultimately have "(f‘(y),f‘(x)) € R" by simp
with A1 ‘xeA¢ ‘yeA‘ have "(y,x) € r"
using ord_iso_apply_conv by simp
} then have "VxeA. VyeA. (x,y) € r V (y,x) € r"
by blast
then show "r {is total on} A" using IsTotal_def
by simp
qed

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes "f € ord_iso(A,r,B,R)" and
"r C AxA" and "IsLinOrder(B,R)"
shows "IsLinOrder(A,r)"
using assms ord_iso_pres_antsym ord_iso_pres_trans ord_iso_pres_tot
IsLinOrder_def by simp

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:
assumes Al: "f € bij(A,B)" and A2: "IsLinOrder(B,R)"
shows "IsLinOrder (A,InducedRelation(f,R))"
proof -
let ?r = "InducedRelation(f,R)"
from A1 have "f € ord_iso(A,?r,B,R)" and "?r C AXxA"
using bij_is_ord_iso domain_of_bij InducedRelation_def
by auto
with A2 show "IsLinOrder(A,?r)" using ord_iso_pres_lin
by simp
qed
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The image by an order isomorphism of a bounded above and nonempty set
is bounded above.

lemma ord_iso_pres_bound_above:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" and

A3: "IsBoundedAbove(C,r)" "C#£O"
shows "IsBoundedAbove(f‘‘(C),R)" "f“(C) # O"
proof -

from A3 obtain u where I: "VxeC. (x,u) € r"
using IsBoundedAbove_def by auto
from A1l have "f:A—B" using ord_iso_is_bij bij_is_fun
by simp
from A2 A3 have "CCA" using Order_ZF_3_L1A by blast
from A3 obtain x where "xeC" by auto
with A2 I have "u€A" by auto
{ fix y assume "y € £°(C)"
with ‘f:A—-B¢ ‘CCA‘ obtain x where "xeC" and "y = £(x)"
using func_imagedef by auto
with A1 T ‘CCA‘ ‘ueA‘ have "(y,f‘(u)) € R"
using ord_iso_apply by auto
} then have "Vy € £¢°(C). (y,f‘(w)) € R" by simp
then show "IsBoundedAbove(f‘‘(C),R)" by (rule Order_ZF_3_L10)
from A3 ‘f:A—B¢ ‘CCA¢ show "f‘‘(C) # 0" using funcl_ 1_L15A
by simp
qed

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" and
A3: "CCA" and A4: "HasAminimum(R,f‘‘(C))"
shows "HasAminimum(r,C)"
proof -
from A4 obtain m where
I: "m e £°(0)" and II: "Vy € £°°(C). (m,y) € R"
using HasAminimum_def by auto

let 7k = "converse(f) ‘(m)"

from A1 have "f:A—B" using ord_iso_is_bij bij_is_fun
by simp

from Al have "f € inj(A,B)" using ord_iso_is_bij bij_is_inj
by simp

with A3 I have "7k € C" and III: "f‘(?k) = m"
using inj_inv_back_in_set by auto
moreover
{ fix x assume A5: "xeC"
with A3 II ‘f:A—B¢ ‘?k € C¢ III have
"Pk € A" "xeA"  "(f(7k),f(x)) € R"
using func_imagedef by auto
with A1 have "(?k,x) € r" using ord_iso_apply_conv
by simp
} then have "VxeC. (7k,x) € r" by simp
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ultimately show "HasAminimum(r,C)" using HasAminimum_def by auto
qed

Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.

lemma ord_iso_pres_rel_image:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and

A3: "acA"
shows "f‘‘(r‘‘{a}) = R ‘{f‘(a)}"
proof
from A1 have "f:A—B" using ord_iso_is_bij bij_is_fun
by simp

moreover from A2 A3 have I: "r‘‘{a} C A" by auto
ultimately have I: "f‘‘(r‘‘{a}) = {f‘(x). x € r*“{a} }"
using func_imagedef by simp
{ fix y assume A4: "y € £ (z‘‘{a})"
with I obtain x where
"X c r“{a}" and I1: ny = fl(X)ll
by auto
with A1 A2 have "(f‘(a),f‘(x)) € R" using ord_iso_apply
by auto
with II have "y € R‘‘{f‘(a)}" by auto
} then show "f<‘(r‘‘{a}) C R‘‘{f‘(a)}" by auto
{ fix y assume A5: "y € R*‘{f‘(a)}"
let ?x = "converse(f) ‘(y)"
from A2 A5 have
"(f‘(a),y) € R" "f‘(a) € B" and IV: "yeB"
by auto
with A1 have III: "(converse(f)‘(f‘(a)),?x) € r"
using ord_iso_converse by simp
moreover from A1 A3 have "converse(f) ‘(f‘(a)) = a"
using ord_iso_is_bij left_inverse_bij by blast
ultimately have "f‘(7x) € {f‘(x). x € r‘‘{a} }"
by auto
moreover from A1l IV have "f‘(7x) = y"
using ord_iso_is_bij right_inverse_bij by blast
moreover from A1 I have "f‘‘(r‘‘{a}) = {f‘(x). x € r‘“{a} }"
using ord_iso_is_bij bij_is_fun func_imagedef by blast
ultimately have "y € £¢‘(r‘‘{a})" by simp
} then show "R ‘{f‘(a)} C £‘(r‘‘{a})" by auto
qed

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and
A3: "CCA"
shows "{f‘‘(r‘‘{a}). aeC} = {R“‘{b}. b € £°°(C)}"
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proof
from A1 have "f:A—B"
using ord_iso_is_bij bij_is_fun by simp
{ fix Y assume "Y € {£f‘(r‘‘{a}). acC}"
then obtain a where "acC" and I: "Y = £‘(r‘‘{a})"
by auto
from A3 ‘acC‘ have "acA" by auto
with A1 A2 have "f‘‘(r‘‘{a}) = R ‘{f‘(a)}"
using ord_iso_pres_rel_image by simp
moreover from A3 ‘f:A—B¢ ‘acC® have "f‘(a) € £°°(C)"
using func_imagedef by auto
ultimately have "f‘(r¢‘{a}) € { R*‘{b}. b € £°°(C) }"
by auto
with I have "Y € { R*‘{b}. b € £°°(C) }" by simp
} then show "{f‘‘(r‘‘{a}). aeC} C {R‘‘{b}. b € £°°(C)}"
by blast
{ fix Y assume "Y € {R‘‘{b}. b € £°°(C)}"
then obtain b where "b € £¢°(C)" and II: "Y = R‘‘{b}"
by auto
with A3 ‘f:A—B°‘ obtain a where "acC" and "b = £¢(a)"
using func_imagedef by auto
with A3 II have "acA" and "Y = R‘‘{f‘(a)}" by auto
with A1 A2 have "Y = £¢‘(r“‘{a})"
using ord_iso_pres_rel_image by simp
with ‘acC‘ have "Y € {f‘‘(r‘‘{a}). acC}" by auto
} then show "{R‘‘{b}. b € £°°(C)} C {£f““(xr‘‘{a}). acC}"
by auto
qed

The image of the set of upper bounds is the set of upper bounds of the
image.

lemma ord_iso_pres_min_up_bounds:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" "R C BxB"
and
A3: "CCA" and A4: "C#0"
shows "f¢‘((NaeC. r‘‘{a}) = (bef “(C). R ‘{bH"
proof -
from A1l have "f € inj(A,B)"
using ord_iso_is_bij bij_is_inj by simp
moreover note A4
moreover from A2 A3 have "VaceC. r‘‘{a} C A" by auto
ultimately have
"f¢e(aeC. r‘{a}) = ( NaeC. £“(r “{a}) )"
using inj_image_of_Inter by simp
also from A1 A2 A3 have
"( NaeC. £°“(r‘‘{a}) ) = ( bef “(C). R ‘{b} )"
using ord_iso_pres_up_bounds by simp
finally show "f¢‘((NaeC. r‘‘{a}) = (bef “(C). R ‘{b})"
by simp
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qed

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and A3: "R {is completel}"
shows "r {is complete}"
proof -
{ fix C
assume A4: "IsBoundedAbove(C,r)" "C#O"
with A1 A2 A3 have
"HasAminimum(R,(\b € £°(C). R ‘{b})"
using ord_iso_pres_bound_above IsComplete_def
by simp
moreover
from A2 ‘IsBoundedAbove(C,r)‘ have I: "C C A" using Order_ZF_3_L1A
by blast
with A1 A2 ‘C#0°¢ have "f‘‘((NacC. r‘‘{a}) = ((bef ‘(C). R ‘{pbH)"
using ord_iso_pres_min_up_bounds by simp
ultimately have "HasAminimum(R,f¢‘([)a€C. r‘‘{a}))"
by simp
moreover
from A2 have "VaeC. r¢‘{a} C A"
by auto
with ‘C#£0‘ have "( (NaeC. r‘‘{a} ) C A" using ZF1_1_L7
by simp
moreover note Al A2
ultimately have "HasAminimum(r, ()a€C. r¢‘{a} )"
using ord_iso_pres_has_min by simp
} then show "r {is complete}" using IsComplete_def
by simp
qed

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes Al: "f € bij(A,B)"
and A2: "R C BxB" and A3: "R {is complete}"
shows "InducedRelation(f,R) {is completel}"
proof -
let ?r = "InducedRelation(f,R)"
from A1 have "f € ord_iso(A,?r,B,R)"
using bij_is_ord_iso by simp
moreover from Al A2 have "7r C AxA"
using bij_is_fun ind_rel_domain by simp
moreover note A2 A3
ultimately show "?r {is completel}"
using ord_iso_pres_compl by simp
qed
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end

12 Finite sets - introduction

theory Finite_ZF imports ZF1 Nat_ZF_IML Cardinal

begin

Standard Isabelle Finite.thy contains a very useful notion of finite powerset:
the set of finite subsets of a given set. The definition, however, is specific
to Isabelle and based on the notion of ”datatype”, obviously not something
that belongs to ZF set theory. This theory file devolopes the notion of
finite powerset similarly as in Finite.thy, but based on standard library’s
Cardinal.thy. This theory file is intended to replace IsarMathLib’s Finite1
and Finite_ZF_1 theories that are currently derived from the ”datatype”
approach.

12.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite pow-
ersets: if the empty set has some property and this property is preserved
by adding a single element of a set, then this property is true for all finite
subsets of this set.

We defined the finite powerset FinPow(X) as those elements of the powerset
that are finite.

definition
"FinPow(X) = {A € Pow(X). Finite(A)}"

The cardinality of an element of finite powerset is a natural number.

lemma card_fin_is_nat: assumes "A € FinPow(X)"
shows "|A|l € nat" and "A =~ [A|"
using assms FinPow_def Finite_def cardinal_cong nat_into_Card
Card_cardinal_eq by auto

A reformulation of card_fin_is_nat: for a finit set A there is a bijection
between |A| and A.

lemma fin_bij_card: assumes Al: "A € FinPow(X)"
shows "db. b € bij(lAl, A"

proof -
from A1l have "|A| ~ A" using card_fin_is_nat eqpoll_sym
by blast
then show 7thesis using eqpoll_def by auto
qed

If a set has the same number of elements as n € N, then its cardinality is n.
Recall that in set theory a natural number n is a set that has n elements.
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lemma card_card: assumes "A =~ n" and "n € nat"
shows "|A| = n"
using assms cardinal_cong nat_into_Card Card_cardinal_eq
by auto

If we add a point to a finite set, the cardinality increases by one. To under-
stand the second assertion |AU{a}| = |A|U{|A|} recall that the cardinality
|A] of A is a natural number and for natural numbers we have n+1 = nU{n}.

lemma card_fin_add_one: assumes Al: "A € FinPow(X)" and A2: "a € X-A"
shows

"l1A U {a}| = succ( |A] )"
"1A U {a}| = Al U {IAl}"
proof -

from A1 A2 have "cons(a,A) = cons( [|Al, [A] )"
using card_fin_is_nat mem_not_refl cons_eqpoll_cong
by auto

moreover have "cons(a,A) = A U {a}" by (rule consdef)

moreover have "cons( |Al, |Al ) = [A] U {IA[}"

by (rule consdef)
ultimately have "AU{a} =~ succ( |A| )" using succ_explained

by simp
with Al show
"|A U {a}| = succ( [A] )" and "|A U {a}| = [A] U {|A]}"
using card_fin_is_nat card_card by auto
qed

We can decompose the finite powerset into collection of sets of the same
natural cardinalities.

lemma finpow_decomp:
shows "FinPow(X) = (|Jn € nat. {A € Pow(X). A ~ n})"
using Finite_def FinPow_def by auto

Finite powerset is the union of sets of cardinality bounded by natural num-
bers.

lemma finpow_union_card_nat:
shows "FinPow(X) = (|Jn € nat. {A € Pow(X). A < nP)"

proof -
have "FinPow(X) C (|Un € nat. {A € Pow(X). A < n})"
using finpow_decomp FinPow_def eqpoll_imp_lepoll
by auto

moreover have
"(Un € nat. {A € Pow(X). A < n}) C FinPow(X)"
using lepoll_nat_imp_Finite FinPow_def by auto
ultimately show 7thesis by auto

qed

A different form of finpow_union_card_nat (see above) - a subset that has
not more elements than a given natural number is in the finite powerset.
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lemma lepoll_nat_in_finpow:
assumes '"n € nat" "A C X" "A < n"
shows "A € FinPow(X)"
using assms finpow_union_card_nat by auto

Natural numbers are finite subsets of the set of natural numbers.

lemma nat_finpow_nat: assumes "n € nat" shows "n € FinPow(nat)"
using assms nat_into_Finite nat_subset_nat FinPow_def
by simp

A finite subset is a finite subset of itself.

lemma fin_finpow_self: assumes "A € FinPow(X)" shows "A € FinPow(A)"
using assms FinPow_def by auto

If we remove an element and put it back we get the set back.

lemma rem_add_eq: assumes "acA" shows "(A-{a}) U {a} = A"
using assms by auto

Induction for finite powerset. This is smilar to the standard Isabelle’s

Fin_induct.

theorem FinPow_induct: assumes Al: "P(0)" and
A2: "VA € FinPow(X). P(A) — (VaeX. P(A U {a}))" and
A3: "B € FinPow(X)"
shows "P(B)"
proof -
{ fix n assume "n € nat"
moreover from A1l have I: "VB€Pow(X). B < 0 — P(B)"
using lepoll_0_is_0 by auto
moreover have "V k € nat.
(VB € Pow(X). (B < k — P(B))) —
(VB € Pow(X). (B < succ(k) — P(B)))"
proof -
{ fix k assume A4: "k € nat"
assume A5: "V B € Pow(X). (B < k — P(B))"
fix B assume A6: "B € Pow(X)" "B < succ(k)"
have "P(B)"
proof -
have "B = 0 — P(B)"
proof -
{ assume "B = 0"
then have "B < 0" using lepoll_O_iff
by simp
with I A6 have "P(B)" by simp
} thus "B = 0 — P(B)" by simp
qed
moreover have "B#0 — P(B)"
proof -
{ assume "B # 0"
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then obtain a where II: "acB" by auto

let 7A = "B - {al}"

from A6 II have "7A C X" and "?7A < k"
using Diff_sing_lepoll by auto

with A4 A5 have "7A € FinPow(X)" and "P(7A)"
using lepoll_nat_in_finpow finpow_decomp

by auto

with A2 A6 II have " P(?A U {a})"
by auto

moreover from II have "?A U {a} = B"
by auto

ultimately have "P(B)" by simp
} thus "B#0 — P(B)" by simp

qed
ultimately show "P(B)" by auto
qged
} thus ?thesis by blast
qed

<n— PB)"

~

ultimately have "VB € Pow(X). (B
by (rule ind_on_nat)
} then have "Vn € nat. VB € Pow(X). (B
by auto
with A3 show "P(B)" using finpow_union_card_nat
by auto
qed

< n — P(B)"

~

A subset of a finites subset is a finite subset.

lemma subset_finpow: assumes "A € FinPow(X)" and "B C A"
shows "B € FinPow(X)"
using assms FinPow_def subset_Finite by auto

If we subtract anything from a finite set, the resulting set is finite.

lemma diff_finpow:
assumes "A € FinPow(X)" shows "A-B € FinPow(X)"
using assms subset_finpow by blast

If we remove a point from a finites subset, we get a finite subset.

corollary fin_rem_point_fin: assumes "A € FinPow(X)"
shows "A - {a} € FinPow(X)"
using assms diff_finpow by simp

Cardinality of a nonempty finite set is a successsor of some natural number.

lemma card_non_empty_succ:
assumes Al: "A € FinPow(X)" and A2: "A # 0"
shows "dn € nat. |A| = succ(n)"
proof -
from A2 obtain a where "a € A" by auto
let 7B = "A - {a}"
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from A1 ‘a € A‘ have
"?B € FinPow(X)" and "a € X - 7B"
using FinPow_def fin_rem_point_fin by auto
then have "|7B U {a}| = succ( |?B| )"
using card_fin_add_one by auto
moreover from ‘a € A‘ ‘7B € FinPow(X) ¢ have
"A = 7B U {a}" and "|[?B| € nat"
using card_fin_is_nat by auto
ultimately show "dn € nat. |[A| = succ(n)" by auto
qed

Nonempty set has non-zero cardinality. This is probably true without the
assumption that the set is finite, but I couldn’t derive it from standard
Isabelle theorems.

lemma card_non_empty_non_zero:
assumes "A € FinPow(X)" and "A # O"
shows "|A| # O"
proof -
from assms obtain n where "|A| = succ(n)"
using card_non_empty_succ by auto
then show "|A| # 0" using succ_not_0
by simp
qed

Another variation on the induction theme: If we can show something holds
for the empty set and if it holds for all finite sets with at most k elements
then it holds for all finite sets with at most k£ + 1 elements, the it holds for
all finite sets.

theorem FinPow_card_ind: assumes Al: "P(0)" and
A2: "Vkeénat.
(VA € FinPow(X). A < k — P(A)) —
(VA € FinPow(X). A < succ(k) — P(A))"
and A3: "A € FinPow(X)" shows "P(A)"
proof -
from A3 have "|A| € nat" and "A € FinPow(X)" and "A < [A|"
using card_fin_is_nat eqpoll_imp_lepoll by auto
moreover have "Vn € nat. (VA € FinPow(X).
A<n— P)"
proof
fix n assume "n € nat"
moreover from Al have "VA € FinPow(X). A < 0 — P(A)"
using lepoll_O_is_0 by auto
moreover note A2
ultimately show
"WA € FinPow(X). A < n — P(A)"
by (rule ind_on_nat)
qed
ultimately show "P(A)" by simp
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qed

Another type of induction (or, maybe recursion). The induction step we try
to find a point in the set that if we remove it, the fact that the property
holds for the smaller set implies that the property holds for the whole set.

lemma FinPow_ind_rem_one: assumes Al: "P(0)" and
A2: "W A € FinPow(X). A # 0 — (Ja€cA. P(A-{a}) — P(A))"
and A3: "B € FinPow(X)"
shows "P(B)"
proof -
note Al
moreover have "Vkéeénat.
(VB € FinPow(X). B < k — P(B)) —»
(VC € FinPow(X). C < succ(k) — P(O))"
proof -
{ fix k assume "k € nat"
assume A4: "VB € FinPow(X). B < k — P(B)"
have "VC € FinPow(X). C < succ(k) — P(C)"
proof -
{ fix C assume "C € FinPow(X)"
assume "C < succ(k)"
note Al
moreover
{ assume "C # 0"
with A2 ‘C € FinPow(X)‘ obtain a where
"aeC" and "P(C-{a}) — P(O)"
by auto
with A4 ‘C € FinPow(X)‘ ‘C < succ(k)
have "P(C)" using Diff_sing lepoll fin_rem_point_fin
by simp }
ultimately have "P(C)" by auto
} thus 7thesis by simp
qged
} thus 7thesis by blast
qed
moreover note A3
ultimately show "P(B)" by (rule FinPow_card_ind)
qed

Yet another induction theorem. This is similar, but slightly more compli-
cated than FinPow_ind_rem_one. The difference is in the treatment of the
empty set to allow to show properties that are not true for empty set.

lemma FinPow_rem_ind: assumes Al: "VA € FinPow(X).
A =0V (dacA. A = {a} v P(A-{a}) — P(A"
and A2: "A € FinPow(X)" and A3: "A#0"
shows "P(A)"
proof -
have "0 = 0 V P(0)" by simp
moreover have
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"V kéEnat.
(VB € FinPow(X). B < k —» (B=0 V P(B))) —
(VA € FinPow(X). A < succ(k) — (A=0 V P(A)))"
proof -
{ fix k assume "k € nat"
assume A4: "VB € FinPow(X). B < k — (B=0 V P(B))"
have "VA € FinPow(X). A < succ(k) — (A=0 V P(A))"
proof -
{ fix A assume "A € FinPow(X)"
assume "A < succ(k)" "AF0"
from A1 ‘A € FinPow(X)‘ ‘A#0° obtain a
where "acA" and "A = {a} V P(A-{a}) — P(A)"
by auto
let 7B = "A-{a}"
from A4 ‘A € FinPow(X)‘ ‘A < succ(k)‘ ‘acA’
have "7B = 0 VvV P(7B)"
using Diff_sing_lepoll fin_rem_point_fin
by simp
with ‘acA‘ ‘A = {a} VvV P(A-{a}) — P(A)¢
have "P(A)" by auto
} thus 7?thesis by auto
qged
} thus ?thesis by blast
qed
moreover note A2
ultimately have "A=0 V P(A)" by (rule FinPow_card_ind)
with A3 show "P(A)" by simp
qed

If a family of sets is closed with respect to taking intersections of two sets
then it is closed with respect to taking intersections of any nonempty finite
collection.

lemma inter_two_inter_fin:
assumes Al: "VVET. VWeT. VN W € T" and
A2: "N # 0" and A3: "N € FinPow(T)"
shows "(ON € T)"
proof -
have "0 = 0 vV (10 € T)" by simp
moreover have "VM € FinPow(T). (M =0V (M € T) —
VW eT MUH{WIr=0V O WMUW) €D"
proof -
{ fix M assume "M € FinPow(T)"
assume A4: "M =0 V (M € T"
{ assume "M = O"
hence "VW € T. MU{W} =0 vV N MU {W} € T"
by auto }
moreover
{ assume "M # 0"
with A4 have "M € T" by simp
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{ fix W assume "W € T"
from ‘M # 0° have "M U {WH = (M N w"

by auto
with A1 ‘M € T* ‘W € T have "M U {W}) € T"
by simp
} hence "VWw € T. MU{W} =0V (MU {W}) e T"
by simp }
ultimately have "VW € T. MU{W} =0 V MU {W}) € T"
by blast
} thus 7thesis by simp
qed

moreover note ‘N € FinPow(T) ¢
ultimately have "N = 0 V (N € T)"
by (rule FinPow_induct)
with A2 show "(\N € T)" by simp
qed

If a family of sets contains the empty set and is closed with respect to taking
unions of two sets then it is closed with respect to taking unions of any finite

collection.

lemma union_two_union_fin:
assumes Al: "0 € C" and A2: "VAeC. VBeC. AUB € C" and
A3: "N € FinPow(C)"
shows "|JN € c"
proof -
from ‘0 € C¢ have "(JO € C" by simp
moreover have "VM € FinPow(C). M € C — (VAeC. M U {A}) € O)"
proof -
{ fix M assume "M € FinPow(C)"
assume "M € C"
fix A assume "AcC"
have "(JM U {A}) = (UM U A" by auto
with A2 ‘(JM € C° ‘AeC‘ have "|JM U {A}) € C"
by simp
} thus ?thesis by simp
qed
moreover note ‘N € FinPow(C) ¢
ultimately show "|JN € C" by (rule FinPow_induct)
qed

Empty set is in finite power set.

lemma empty_in_finpow: shows "0 € FinPow(X)"
using FinPow_def by simp

Singleton is in the finite powerset.

lemma singleton_in_finpow: assumes "x € X"
shows "{x} € FinPow(X)" using assms FinPow_def by simp

Union of two finite subsets is a finite subset.
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lemma union_finpow: assumes "A € FinPow(X)" and "B € FinPow(X)"
shows "A U B € FinPow(X)"
using assms FinPow_def by auto

Union of finite number of finite sets is finite.

lemma fin_union_finpow: assumes "M € FinPow(FinPow(X))"
shows "|JM € FinPow(X)"
using assms empty_in_finpow union_finpow union_two_union_fin
by simp

If a set is finite after removing one element, then it is finite.

lemma rem_point_fin_fin:
assumes Al: "x € X" and A2: "A - {x} € FinPow(X)"
shows "A € FinPow(X)"
proof -
from assms have "(A - {x}) U {x} € FinPow(X)"
using singleton_in_finpow union_finpow by simp
moreover have "A C (A - {x}) U {x}" by auto
ultimately show "A € FinPow(X)"
using FinPow_def subset_Finite by auto
qed

An image of a finite set is finite.

lemma fin_image_fin: assumes "VVEB. K(V)€C" and "N € FinPow(B)"
shows "{K(V). VeN} € FinPow(C)"

proof -
have "{K(V). Ve0} € FinPow(C)" using FinPow_def
by auto

moreover have "VA € FinPow(B).
{K(V). VeA} € FinPow(C) — (VaeB. {K(V). V € (A U {a})} € FinPow(C))"
proof -
{ fix A assume "A € FinPow(B)"
assume "{K(V). VEA} € FinPow(C)"
fix a assume "acB"
have "{K(V). V € (A U {a})} € FinPow(C)"
proof -
have "{K(V). Vv € (A U {abh)} = {K(V). VeA} U {K(a)}"
by auto
moreover note ‘{K(V). VeA} € FinPow(C)°
moreover from ‘VVeB. K(V) € C¢ ‘aeB‘ have "{K(a)} € FinPow(C)"
using singleton_in_finpow by simp
ultimately show 7thesis using union_finpow by simp
qed
} thus ?thesis by simp
qged
moreover note ‘N € FinPow(B) ‘¢
ultimately show "{K(V). VEN} € FinPow(C)"
by (rule FinPow_induct)
qed
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Union of a finite indexed family of finite sets is finite.

lemma union_fin_list_fin:
assumes Al: "n € nat" and A2: "Vk € n. N(k) € FinPow(X)"
shows
"{N(k). k € n} € FinPow(FinPow(X))" and "(Jk € n. N(k)) € FinPow(X)"
proof -
from Al have "n € FinPow(n)"
using nat_finpow_nat fin_finpow_self by auto
with A2 show "{N(k). k € n} € FinPow(FinPow(X))"
by (rule fin_image_fin)
then show "(|Jk € n. N(k)) € FinPow(X)"
using fin_union_finpow by simp
qed

end

13 Finite sets

theory Finitel imports Finite funcl ZF1
begin

This theory extends Isabelle standard Finite theory. It is obsolete and
should not be used for new development. Use the Finite_ZF instead.

13.1 Finite powerset

In this section we consider various properties of Fin datatype (even though
there are no datatypes in ZF set theory).

In Topology_zF theory we consider induced topology that is obtained by
taking a subset of a topological space. To show that a topology restricted
to a subset is also a topology on that subset we may need a fact that if T is
a collection of sets and A is a set then every finite collection {V;} is of the
form V; = U; N A, where {U;} is a finite subcollection of T". This is one of
those trivial facts that require suprisingly long formal proof. Actually, the
need for this fact is avoided by requiring intersection two open sets to be
open (rather than intersection of a finite number of open sets). Still, the fact
is left here as an example of a proof by induction. We will use Fin_induct
lemma from Finite.thy. First we define a property of finite sets that we want
to show.

definition
"Prfin(T,A,M) = ( (M = 0) | (INe Fin(T). VVe M. 3 Ue N. (V = UNnA)))"

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
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of the ind_step lemma are those needed by the main induction step in lemma
Fin_induct (see standard Isabelle’s Finite.thy).

lemma ind_step: assumes A: "V Ve TA. 3 UeT. V=UNA"
and Al: "WETA" and A2: "Me Fin(TA)"
and A3: "W¢M" and A4: "Prfin(T,A,M)"
shows "Prfin(T,A,cons(W,M))"

proof -
{ assume A7: "M=0" have "Prfin(T, A, cons(W, M))"
proof-
from A1 A obtain U where A5: "UcT" and A6: "W=UNA" by fast
let 7N = "{U}"

from A5 have T1: "?N € Fin(T)" by simp
from A7 A6 have T2: "VVe cons(W,M). 3 Ue?N. V=UNA" by simp
from A7 T1 T2 show "Prfin(T, A, cons(W, M))"
using Prfin_def by auto
qed }
moreover
{ assume A8:"M#0" have "Prfin(T, A, cons(W, M))"
proof-
from A1 A obtain U where A5: "U€T" and A6:"W=UNA" by fast
from A8 A4 obtain NO
where A9: "NO€ Fin(T)" and A10: "VVe M. 3 UO€ NO. (V = UONA)"
using Prfin_def by auto
let ?N = "cons(U,NO)"
from A5 A9 have "?N € Fin(T)" by simp
moreover from A10 A6 have "VVe cons(W,M). 3 Ue?N. V=UNA" by simp
ultimately have "3 Ne Fin(T).VVe cons(W,M). 3 UeN. V=UNA" by
auto
with A8 show "Prfin(T, A, cons(W, M))"
using Prfin_def by simp
qed }
ultimately show ?7thesis by auto
qed

Now we are ready to prove the statement we need.

theorem FinRestr0O: assumes A: "V V € TA. 4 Ue T. V=UNA"
shows "V Me& Fin(TA). Prfin(T,A,M)"
proof -
{ fix M
assume "M € Fin(TA)"
moreover have "Prfin(T,A,0)" using Prfin_def by simp
moreover
{ fix W M assume "WETA" "Me Fin(TA)" "W¢M" "Prfin(T,A,M)"
with A have "Prfin(T,A,cons(W,M))" by (rule ind_step) }
ultimately have "Prfin(T,A,M)" by (rule Fin_induct)
} thus 7thesis by simp
qed

This is a different form of the above theorem:
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theorem ZF1FinRestr:
assumes Al:"Me Fin(TA)" and A2: "M#0"
and A3: "V Ve TA. 3 Ue T. V=UNA"
shows "dNe Fin(T). (VVe M. 34 Ue N. (V = UNA)) A N#0"
proof -
from A3 A1 have "Prfin(T,A,M)" using FinRestrO by blast
then have "INe Fin(T). VVe M. 3 Ue N. (V = UNA)"
using A2 Prfin_def by simp
then obtain N where
D1:"Ne Fin(T) A (VVE M. 3 Ue N. (V = UDA))" by auto
with A2 have "N#0" by auto
with D1 show 7thesis by auto
qed

Purely technical lemma used in Topology_ZF_1 to show that if a topology is
T5, then it is Tj.

lemma Finitel L2:
assumes A:"3JU V. (UET A VET A x€U A yeV A UNV=0)"
shows "JUET. (x€U A ygUu)"
proof -
from A obtain U V where D1:"UET A VET A x€U A yeV A UNV=0" by auto
with D1 show 7?7thesis by auto
qed

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

lemma Finitel L3_IndStep:
assumes Al:"VA B. ((AeC A BeC) — AUBEC)"
and A2: "AeC" and A3: "N€Fin(C)" and A4:"A¢N" and A5:"(JN € C"
shows "|Jcons(A,N) € C"
proof -
have "(J cons(A,N) = AU (JN" by blast
with A1 A2 A5 show ?7thesis by simp
qed

The lemma.: a collection closed with respect to taking a union of two sets is
closed under taking finite unions.

lemma Finitel_L3:
assumes Al: "0 € C" and A2: "VA B. ((A€eC A BeC) — AUBEC)" and

A3: "Ne Fin(C)"
shows "(JNeC"
proof -
note A3
moreover from Al have "(JO € C" by simp
moreover
{ fix AN
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assume "AcC" "NeFin(C)" "A¢N" "N € C"
with A2 have "|Jcons(A,N) € C" by (rule Finitel_L3_IndStep) }
ultimately show "|JNe C" by (rule Fin_induct)
qed

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finitel_L3, because the intersection of empty collection
is undefined (or should be treated as such). To simplify notation we define
the property to be proven for finite sets as a separate notion.

definition
"IntPr(T,N) = (W=0 ] (AN € D"

The induction step.

lemma Finitel_L4_IndStep:
assumes Al: "VA B. ((A€T A BET) — ANBET)"
and A2: "A€T" and A3:"NEFin(T)" and A4:"A¢N" and A5:"IntPr(T,N)"
shows "IntPr(T,cons(A,N))"
proof -
{ assume A6: "N=0"
with A2 have "IntPr(T,cons(A,N))"
using IntPr_def by simp }
moreover
{ assume A7: "N#0" have "IntPr(T, cons(A, N))"
proof -
from A7 A5 A2 A1 have "(\N N A € T" using IntPr_def by simp
moreover from A7 have "(cons(A, N) = [N N A" by auto
ultimately show "IntPr(T, cons(A, N))" using IntPr_def by simp
ged }
ultimately show 7thesis by auto
qed

The lemma.

lemma Finitel_L4:
assumes Al: "VA B. A€T A BET — ANB € T"
and A2: "Ne€Fin(T)"
shows "IntPr(T,N)"
proof -
note A2
moreover have "IntPr(T,0)" using IntPr_def by simp
moreover
{ fix AN
assume "A€ET" "NeFin(T)" "AQEN" "IntPr(T,N)"
with A1 have "IntPr(T,cons(A,N))" by (rule Finitel_L4_IndStep) }
ultimately show "IntPr(T,N)" by (rule Fin_induct)
qed
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Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.

lemma Finitel L5:
assumes Al: "VA B. ((A€T A BET) — ANBET)"
and A2: "N#0" and A3: "N€Fin(T)"
shows "N € T"
proof -
from A1 A3 have "IntPr(T,N)" using Finitel_L4 by simp
with A2 show ?7thesis using IntPr_def by simp
qed

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them
results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction. The next lemma
is the induction step.

lemma fin_image_fin_IndStep:
assumes "VVeEB. K(V)eC"
and "U€B" and "N€Fin(B)" and "U¢N" and "{K(V). VEN}€Fin(C)"
shows "{K(V). V€cons(U,N)} € Fin(C)"
using assms by simp

The lemma:

lemma fin_image_fin:
assumes Al: "VVeB. K(V)eC" and A2: "NeFin(B)"
shows "{K(V). VeN} € Fin(C)"
proof -
note A2
moreover have "{K(V). Ve0} € Fin(C)" by simp
moreover
{fixUN
assume "UEB" "NeFin(B)" "U¢N" "{K(V). VEN}€Fin(C)"
with A1 have "{K(V). Vecons(U,N)} € Fin(C)"
by (rule fin_image_fin_IndStep) }
ultimately show 7thesis by (rule Fin_induct)
qed

The image of a finite set is finite.

lemma Finitel L6A: assumes Al: "f:X—Y" and A2: "N € Fin(X)"
shows "f¢¢(N) € Fin(Y)"
proof -
from A1 have "VxeX. £°(x) € y"
using apply_type by simp
moreover note A2
ultimately have "{f‘(x). xe€N} € Fin(Y)"
by (rule fin_image_fin)
with Al A2 show 7thesis
using FinD func_imagedef by simp
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qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6B:
assumes Al: "VxeX. a(x) € Y" and A2: "{b(y).yeY} € Fin(Z)"
shows "{b(a(x)).x€X} € Fin(Z)"
proof -
from A1 have "{b(a(x)).x€X} C {b(y).y€Y¥}" by auto
with A2 show ?7thesis using Fin_subset_lemma by blast
qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6C:
assumes Al: "VyeY. b(y) € Z" and A2: "{a(x). x€X} € Fin(Y)"
shows "{b(a(x)).x€X} € Fin(Z)"
proof -
let ?N = "{a(x). xeX}"
from A1 A2 have "{b(y). y € 7N} € Fin(Z)"
by (rule fin_image_fin)
moreover have "{b(a(x)). x€X} = {b(y). y& 7N}"
by auto
ultimately show 7thesis by simp
qed

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty and prove by contradiction. Should be in ZF1.thy

lemma Finitel_L9: assumes Al:"[|A # 0" shows "A#Q"
proof -
{ assume A2: "= A # O"
with A1 have False by simp
} thus 7thesis by auto
qed

Cartesian product of finite sets is finite.

lemma Finitel_L12: assumes Al: "A € Fin(A)" and A2: "B € Fin(B)"
shows "AXB € Fin(AxB)"
proof -
have T1:"Va€A. VbeB. {( a,b)} € Fin(AXB)" by simp
have "VacA. {{( a,b)}. b € B} € Fin(Fin(AxB))"
proof
fix a assume A3: "a € A"
with T1 have "VbeB. {( a,b)} € Fin(AxB)"
by simp
moreover note A2
ultimately show "{{( a,b)}. b € B} € Fin(Fin(AxB))"
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by (rule fin_image_fin)
qed
then have "VacA. |J {{( a,b)}. b € B} € Fin(AxB)"
using Fin_UnionI by simp
moreover have
"VacA. U {{( a,b)}. b € B} = {a}x B" by blast
ultimately have "VacA. {a}x B € Fin(AxB)" by simp
moreover note Al
ultimately have "{{a}x B. ac€A} € Fin(Fin(AxB))"
by (rule fin_image_fin)
then have "|J{{a}x B. a€A} € Fin(AxB)"
using Fin_UnionI by simp
moreover have "|J{{a}x B. acA} = AXB" by blast
ultimately show 7thesis by simp
qed

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

definition
"Characteristic(A,default,x) = (if x€A then x else default)"

A finite subset is a finite subset of itself.

lemma Finitel_L13:
assumes A1:"A € Fin(X)" shows "A € Fin(A)"

proof -
{ assume "A=0" hence "A € Fin(A)" by simp }
moreover
{ assume A2: "A#0" then obtain ¢ where D1:"ceA"
by auto

then have "Vx€X. Characteristic(A,c,x) € A"
using Characteristic_def by simp

moreover note Al

ultimately have
"{Characteristic(A,c,x). x€A} € Fin(A)"
by (rule fin_image_fin)

moreover from D1 have
"{Characteristic(A,c,x). x€A} = A"
using Characteristic_def by simp

ultimately have "A € Fin(A)" by simp }

ultimately show 7thesis by blast
qed

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finitel_L14: assumes Al: "A € Fin(X)" "B € Fin(Y)"
shows "AXB € Fin(XxY)"

proof -
from A1 have "AxB C XxY" using FinD by auto
then have "Fin(AxB) C Fin(XxY)" using Fin_mono by simp
moreover from A1 have "AXB € Fin(AxB)"

135



using Finitel L13 Finitel L12 by simp
ultimately show 7thesis by auto
qed

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finitel L15:
assumes Al: "{b(x). x€A} € Fin(B)" "{c(x). x€A} € Fin(C)"
and A2: "f : BxXxC—E"
shows "{f‘( b(x),c(x)). x€A} € Fin(E)"
proof -
from A1 have "{b(x). x€A}x{c(x). x€A} € Fin(BxC)"
using Finitel_L14 by simp
moreover have
"{{ b(x),c(x)). x€A} C {b(x). x€A}Ix{c(x). x€A}"
by blast
ultimately have TO: "{({ b(x),c(x)). x€A} € Fin(BxC)"
by (rule Fin_subset_lemma)
with A2 have T1: "f‘‘{({ b(x),c(x)). x€A} € Fin(E)"
using Finitel L6A by auto
from TO have "VxeA. ( b(x),c(x)) € BxC"
using FinD by auto
with A2 have
L b(x),c(x)). x€AY = {£( b(x),c(x)). xEA}I"
using funcl_1_L17 by simp
with T1 show ?7thesis by simp
qed

Singletons are in the finite powerset.

lemma Finitel_L16: assumes "xcX" shows "{x} € Fin(X)"
using assms emptyI consI by simp

A special case of Finitel_L15 where the second set is a singleton. Group_zZF_3
theory this corresponds to the situation where we multiply by a constant.

lemma Finitel L16AA: assumes "{b(x). x€A} € Fin(B)"
and "ceC" and "f : BXC—E"
shows "{f‘( b(x),c). x€A} € Fin(E)"
proof -
from assms have
"YyeB. £(y,c) € E"
"{b(x). x€A} € Fin(B)"
using apply_funtype by auto
then show 7thesis by (rule Finitel L6C)
qed

First order version of the induction for the finite powerset.

lemma Finitel_L16B: assumes Al: "P(0)" and A2: "B€Fin(X)"
and A3: "VAeFin(X) .VxeX. X¢A A P(A) —PAU{x})"
shows "P(B)"
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proof -
note ‘BeFin(X)‘ and ‘P(0)°
moreover
{ fix A x
assume "x € X" "A € Fin(X)" "x ¢ A" "P(A)"
moreover have "cons(x,A) = AU{x}" by auto
moreover note A3
ultimately have "P(cons(x,A))" by simp }
ultimately show "P(B)" by (rule Fin_induct)
qed

13.2 Finite range functions

In this section we define functions f : X — Y, with the property that
f(X) is a finite subset of Y. Such functions play a important role in the
construction of real numbers in the Real_ZF series.

Definition of finite range functions.

definition
"FinRangeFunctions(X,Y) = {f:X—Y. £ (X) € Fin(Y)}"

Constant functions have finite range.

lemma Finitel_L17: assumes "c€Y" and "X#0"
shows "ConstantFunction(X,c) € FinRangeFunctions(X,Y)"
using assms funcl_3_L1 func_imagedef funcl_3_L2 Finitel_L16
FinRangeFunctions_def by simp

Finite range functions have finite range.

lemma Finitel_L18: assumes "f € FinRangeFunctions(X,Y)"
shows "{f‘(x). x€X} € Fin(Y)"
using assms FinRangeFunctions_def func_imagedef by simp

An alternative form of the definition of finite range functions.

lemma Finitel_L19: assumes "f:X—Y"
and "{f‘(x). x€X} € Fin(YD"
shows "f € FinRangeFunctions(X,Y)"
using assms func_imagedef FinRangeFunctions_def by simp

A composition of a finite range function with another function is a finite
range function.

lemma Finitel L20: assumes Al:"f € FinRangeFunctions(X,Y)"
and A2: "g : Y—=Z"
shows "g 0 £ € FinRangeFunctions(X,Z)"
proof -
from A1 A2 have "g‘‘{f‘(x). x€X} € Fin(Z)"
using Finitel_L18 Finitel_L6A
by simp
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with A1 A2 have "{(g 0 f)‘(x). x€X} € Fin(Z)"
using FinRangeFunctions_def apply_funtype
funcl_1_L17 comp_fun_apply by auto
with Al A2 show ?7thesis using
FinRangeFunctions_def comp_fun Finitel_L19
by auto
qed

Image of any subset of the domain of a finite range function is finite.

lemma Finitel_L21:
assumes "f € FinRangeFunctions(X,Y)" and "ACX"
shows "f‘‘(A) € Fin(Y)"
proof -
from assms have "f¢‘(X) € Fin(Y)" "f¢‘(A) C £°°(X)"
using FinRangeFunctions_def funcl_1_L8
by auto
then show "f‘‘(A) € Fin(Y)" using Fin_subset_lemma
by blast
qed

end

14 Finite sets 1

theory Finite_ZF_1 imports Finitel Order_ZF_la
begin

This theory is based on Finitel theory and is obsolete. It contains properties
of finite sets related to order relations. See the FinOrd theory for a better
approach.

14.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

lemma Finite_ZF_1_1_L1:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "AeFin(X)" and A4: "xeX" and A5: "A=0 V HasAmaximum(r,A)"
shows "AU{x} = 0 V HasAmaximum(r,AU{x})"
proof -
{ assume "A=0" then have T1: "AU{x} = {x}" by simp
from A1 have "refl(X,r)" using total_is_refl by simp
with T1 A4 have "AU{x} = 0 V HasAmaximum(r,AU{x})"
using Order_ZF_4_L8 by simp }
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moreover
{ assume "A#0"
with A1 A2 A3 A4 A5 have "AU{x} = 0 V HasAmaximum(r,AU{x})"
using FinD Order_ZF_4_L9 by simp }
ultimately show 7thesis by blast
qed

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "BeFin(X)"
shows "B=0 V HasAmaximum(r,B)"
proof -
have "0=0 V HasAmaximum(r,0)" by simp
moreover note A3
moreover from A1 A2 have "VAcFin(X). VxeX.
x¢A A (A=0 V HasAmaximum(r,A)) — (AU{x}=0 V HasAmaximum(r,AU{x}))"
using Finite ZF_1_1_L1 by simp
ultimately show "B=0 V HasAmaximum(r,B)" by (rule Finitel L16B)
qed

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "A€Fin(X)" and A4: "xeX" and A5: "A=0 V HasAminimum(r,A)"
shows "AU{x} = 0 V HasAminimum(r,AU{x})"
proof -
{ assume "A=0" then have T1: "AU{x} = {x}" by simp
from A1 have "refl(X,r)" using total_is_refl by simp
with T1 A4 have "AU{x} = 0 V HasAminimum(r,AU{x})"
using Order_ZF_4_L8 by simp }
moreover
{ assume "A#£0"
with A1 A2 A3 A4 A5 have "AU{x} = 0 V HasAminimum(r,AU{x})"
using FinD Order_ZF_4_L10 by simp }
ultimately show 7thesis by blast
qed

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "B € Fin(X)"
shows "B=0 V HasAminimum(r,B)"
proof -
have "0=0 V HasAminimum(r,0)" by simp
moreover note A3
moreover from A1 A2 have "VAcFin(X). VxeX.
x¢A A (A=0 V HasAminimum(r,A)) — (AU{x}=0 V HasAminimum(r,AU{x}))"
using Finite_ZF_1_1_L2 by simp
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ultimately show "B=0 V HasAminimum(r,B)" by (rule Finitel L16B)
qed

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "Be€Fin(X)"
shows "IsBounded(B,r)"
proof -
from A1 A2 A3 have "B=0 V HasAminimum(r,B)" "B=0 V HasAmaximum(r,B)"
using Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B by auto
then have
"B = 0 V IsBoundedBelow(B,r)" "B = 0 V IsBoundedAbove(B,r)"
using Order_ZF_4_L7 Order_ZF_4_L8A by auto
then show "IsBounded(B,r)" using
IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by simp
qed

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.

theorem Finite_ZF_1_T2:
assumes Al: "IsLinOrder(X,r)" and A2: "A € Fin(X)" and A3: "A#0Q0"
shows
"Maximum(r,A) € A"
"Minimum(r,A) € A"
"WxeA. (x,Maximum(r,A)) € r"
"Wx€A. (Minimum(r,A),x) € T
proof -
from A1 have T1: "r {is total on} X" "trans(r)" "antisym(r)"
using IsLinOrder_def by auto
moreover from T1 A2 A3 have "HasAmaximum(r,A)"
using Finite_ZF_1_1_T1A by auto
moreover from T1 A2 A3 have "HasAminimum(r,A)"
using Finite_ZF_1_1_T1B by auto
ultimately show
"Maximum(r,A) € A"
"Minimum(r,A) € A"
"WxeA. (x,Maximum(r,A)) € r" "Vx€A. (Minimum(r,A),x) € "
using Order_ZF_4_L3 Order_ZF_4_L4 by auto
qed

A special case of Finite_ZF_1_T2 when the set has three elements.

corollary Finite_ZF_1_L2A:

assumes Al: "IsLinOrder(X,r)" and A2: "acX" "beX" "ceX"
shows
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"Maximum(r,{a,b,c}) € {a,b,c}"
"Minimum(r,{a,b,c}) € {a,b,c}"
"Maximum(r,{a,b,c}) € X"
"Minimum(r,{a,b,c}) € X"
"(a,Maximum(r,{a,b,c})) € r
"(b,Maximum(r,{a,b,c})) € r
"(c,Maximum(r,{a,b,c})) € r
proof -
from A2 have I: "{a,b,c} € Fin(X)" "{a,b,c} # 0"
by auto
with A1 show II: "Maximum(r,{a,b,c}) € {a,b,c}"
by (rule Finite_ZF_1_T2)
moreover from A1 I show III: "Minimum(r,{a,b,c}) € {a,b,c}"
by (rule Finite_ZF_1_T2)
moreover from A2 have "{a,b,c} C X"
by auto
ultimately show
"Maximum(r,{a,b,c}) € X"
"Minimum(r,{a,b,c}) € X"
by auto
from A1 I have "Vxe€{a,b,c}. (x,Maximum(r,{a,b,c})) € r"
by (rule Finite_ZF_1_T2)
then show
"(a,Maximum(r,{a,b,c})) € r
"(b,Maximum(r,{a,b,c})) € "
"(c,Maximum(r,{a,b,c})) € "
by auto
qed

If for every element of X we can find one in A that is greater, then the A
can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:
assumes Al: "r {is total on} X"
and A2: "trans(r)" and A3: "antisym(r)"
and A4: "r C XxX" and A5: "X#0"
and A6: "Vxe€X. JacA. x#a A (x,a) € r"
shows "A ¢ Fin(X)"
proof -
from assms have "—IsBounded(A,r)"
using Order_ZF_3_L14 IsBounded_def
by simp
with A1 A2 show "A ¢ Fin(X)"
using Finite_ZF_1_T1 by auto
qed

end
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15 Finite sets and order relations

theory FinOrd_ZF imports Finite_ZF func_ZF_1
begin

This theory file contains properties of finite sets related to order relations.
Part of this is similar to what is done in Finite_ZF_1 except that the devel-
opment is based on the notion of finite powerset defined in Finite_ZF rather
the one defined in standard Isabelle Finite theory.

15.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

theorem fin_has_max:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "B € FinPow(X)" and A4: "B # 0"
shows "HasAmaximum(r,B)"
proof -
have "0=0 V HasAmaximum(r,0)" by simp
moreover have
"YA € FinPow(X). A=0 V HasAmaximum(r,A) —
(VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x}))"

proof -
{ fix A
assume "A € FinPow(X)" "A = 0 V HasAmaximum(r,A)"
have "VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x})"
proof -

{ fix x assume "x€X"
note ‘A = 0 V HasAmaximum(r,A) ‘¢
moreover
{ assume "A = 0"
then have "AU{x} = {x}" by simp
from A1 have "refl(X,r)" using total_is_refl
by simp
with ‘xeX‘ ‘AU{x} = {x}‘ have "HasAmaximum(r,AU{x})"
using Order_ZF_4_L8 by simp }
moreover
{ assume "HasAmaximum(r,A)"
with A1 A2 ‘A € FinPow(X) ‘¢ ‘xe€X¢
have "HasAmaximum(r,AU{x})"
using FinPow_def Order_ZF_4_19 by simp }
ultimately have "A U {x} = 0 V HasAmaximum(r,A U {x})"
by auto
} thus "VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x})"
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by simp
qed
} thus ?thesis by simp
qed
moreover note A3
ultimately have "B = 0 V HasAmaximum(r,B)"
by (rule FinPow_induct)
with A4 show "HasAmaximum(r,B)" by simp
qed

For linearly ordered nonempty finite sets the maximum is in the set and
indeed it is the greatest element of the set.

lemma linord_max_props: assumes Al: "IsLinOrder(X,r)" and
A2: "A € FinPow(X)" "A # O"
shows
"Maximum(r,A) € A"
"Maximum(r,A) € X"
"Vach. (a,Maximum(r,A)) € r"
proof -
from A1 A2 show
"Maximum(r,A) € A" and "Va€A. (a,Maximum(r,A)) € r"
using IsLinOrder_def fin_has_max Order_ZF_4_L3
by auto
with A2 show "Maximum(r,A) € X" using FinPow_def
by auto
qed

15.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the
same number of elements, then they are order-isomorphic and the isomor-
phism is unique. This allows us to talk about ”enumeration” of a linearly
ordered finite set. We define the enumeration as the order isomorphism
between the number of elements of the set (which is a natural number
n={0,1,..,n —1}) and the set.

A really weird corner case - empty set is order isomorphic with itself.

lemma empty_ord_iso: shows "ord_iso(0,r,0,R) # 0"
proof -
have "0 =~ 0" using eqpoll_refl by simp
then obtain f where "f € bij(0,0)"
using eqpoll_def by blast
then show 7thesis using ord_iso_def by auto
qed

Even weirder than empty_ord_iso The order automorphism of the empty set
is unique.

lemma empty_ord_iso_uniq:
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assumes "f € ord_iso(0,r,0,R)" "g € ord_iso(0,r,0,R)"
shows "f = g"
proof -
from assms have "f : 0 — 0" and "g: 0 — 0"
using ord_iso_def bij_def surj_def by auto
moreover have "Vxe€0. £°(x) = g‘(x)" by simp
ultimately show "f = g" by (rule func_eq)
qed

The empty set is the only order automorphism of itself.

lemma empty_ord_iso_empty: shows "ord_iso(0,r,0,R) = {0}"
proof -
have "0 € ord_iso(0,r,0,R)"
proof -
have "ord_iso(0,r,0,R) # 0" by (rule empty_ord_iso)
then obtain f where "f € ord_iso(0,r,0,R)" by auto
then show "0 € ord_iso(0,r,0,R)"
using ord_iso_def bij_def surj_def fun_subset_prod
by auto
qed
then show "ord_iso(0,r,0,R) = {0}" using empty_ord_iso_uniq
by blast
qed

An induction (or maybe recursion?) scheme for linearly ordered sets. The
induction step is that we show that if the property holds when the set is
a singleton or for a set with the maximum removed, then it holds for the
set. The idea is that since we can build any finite set by adding elements on
the right, then if the property holds for the empty set and is invariant with
respect to this operation, then it must hold for all finite sets.

lemma fin_ord_induction:
assumes Al: "IsLinOrder(X,r)" and A2: "P(0)" and
A3: "VA € FinPow(X). A # 0 — (P(A - {Maximum(r,A)}) — P(A))"
and A4: "B € FinPow(X)" shows "P(B)"
proof -
note A2
moreover have "V A € FinPow(X). A # 0 — (JacA. P(A-{a}) — P(A)"
proof -
{ fix A assume "A € FinPow(X)" and "A # 0"
with A1 A3 have "JacA. P(A-{a}) — P(A)"
using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
by blast
} thus 7thesis by simp
qed
moreover note A4
ultimately show "P(B)" by (rule FinPow_ind_rem_one)
qed
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A sligltly more complicated version of fin_ord_induction that allows to
prove properties that are not true for the empty set.

lemma fin_ord_ind:
assumes Al: "IsLinOrder(X,r)" and A2: "VA € FinPow(X).
A=0V (A= {Maximum(r,A)} V P(A - {Maximum(r,A)}) — P(A))"
and A3: "B € FinPow(X)" and A4: "B#0"
shows "P(B)"
proof -
{ fix A assume "A € FinPow(X)" and "A # 0"
with A1 A2 have
"JacA. A = {a} vV P(A-{a}) — P(A"
using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
by blast
} then have "VA € FinPow(X).
A =0V (JacA. A = {a} V P(A-{a}) — PA)"
by auto
with A3 A4 show "P(B)" using FinPow_rem_ind
by simp
qed

Yet another induction scheme. We build a linearly ordered set by adding
elements that are greater than all elements in the set.

lemma fin_ind_add_max:
assumes Al: "IsLinOrder(X,r)" and A2: "P(0)" and A3: "V A € FinPow(X).

(V x € X-A. P(A) A (Va€A. (a,x) € r ) — P(A U {x)"
and A4: "B € FinPow(X)"

shows "P(B)"
proof -
note A1 A2

moreover have
"/C € FinPow(X). C # 0 — (P(C - {Maximum(r,C)}) — P(C))"

proof -
{ fix C assume "C € FinPow(X)" and "C # 0"
let 7x = "Maximum(r,C)"

let 74 = "C - {7x}"
assume "P(7A)"
moreover from ‘C € FinPow(X)‘ have "7A € FinPow(X)"
using fin_rem_point_fin by simp
moreover from A1 ‘C € FinPow(X) ¢ ‘C # 0¢ have
"?x € C" and "?x € X - 7A" and "Vac?A. (a,?x) € r"
using linord_max_props by auto
moreover note A3
ultimately have "P(7A U {7x})" by auto
moreover from ‘?x € C° have "7A U {7x} = C"
by auto
ultimately have "P(C)" by simp
} thus ?thesis by simp
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qed
moreover note A4
ultimately show "P(B)" by (rule fin_ord_induction)
qed

The only order automorphism of a linearly ordered finite set is the identity.

theorem fin_ord_auto_id: assumes Al: "IsLinOrder(X,r)"
and A2: "B € FinPow(X)" and A3: "B#£0"
shows "ord_iso(B,r,B,r) = {id(B)}"

proof -
note Al
moreover
{ fix A assume "A € FinPow(X)" "A#0"
let ?M = "Maximum(r,A)"

let 7Ag = "A - {7M}"
assume "A = {?M} V ord_iso(?Ap,r,?4p,r) = {id(?A)}"
moreover
{ assume "A = {?M}"
have "ord_iso({?M},r,{?M},r) = {id({?M})}"
using id_ord_auto_singleton by simp
with ‘A = {?M}‘ have "ord_iso(A,r,A,r) = {id(A)}"
by simp }
moreover
{ assume "ord_iso(?Ag,r,?Ag,r) = {id(?Ag)}"
have "ord_iso(A,r,A,r) = {id(A)}"
proof
show "{id(A)} C ord_iso(A,r,A,r)"
using id_ord_iso by simp
{ fix f assume "f € ord_iso(A,r,A,r)"
with A1 ‘A € FinPow(X) ¢ ‘A#0¢ have
"restrict(f,74p) € ord_iso(?hAy, r, A-{f<(?M)},r)"
using IsLinOrder_def fin_has_max ord_iso_rem_max
by auto
with A1 ‘A € FinPow(X)‘ ‘A#0‘ ‘f € ord_iso(A,r,A,r)¢
‘ord_iso(?Ag,r,?Ag,r) = {id(?Ag)}¢
have "restrict(f,?hAp) = id(7Ag)"
using IsLinOrder_def fin_has_max max_auto_fixpoint
by auto
moreover from A1 ‘f € ord_iso(A,r,A,r)°
‘A € FinPow(X)¢ ‘A#0‘ have
"f : A — A" and "?M € A" and "f‘(7M) = 7M"
using ord_iso_def bij_is_fun IsLinOrder_def
fin_has_max Order_ZF_4_L3 max_auto_fixpoint
by auto
ultimately have "f = id(A)" using id_fixpoint_rem
by simp
} then show "ord_iso(A,r,A,r) C {id(A)}"
by auto
qed
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}

ultimately have "ord_iso(A,r,A,r) = {id(A)}"
by auto
} then have "VA € FinPow(X). A =0 V
(A = {Maximum(r,A)} V
ord_iso(A-{Maximum(r,A)},r,A-{Maximum(r,A)},r) =
{id(A-{Maximum(r,A)})} — ord_iso(A,r,A,r) = {id(A)})"
by auto
moreover note A2 A3
ultimately show "ord_iso(B,r,B,r) = {id(B)}"
by (rule fin_ord_ind)
qed

Every two finite linearly ordered sets are order isomorphic. The statement
is formulated to make the proof by induction on the size of the set easier,
see fin_ord_iso_ex for an alternative formulation.

lemma fin_order_iso:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "n € nat"
shows "VA € FinPow(X). VB € FinPow(Y).
A~nAB~n— ord_iso(A,r,B,R) # 0"
proof -
note A2
moreover have "VA € FinPow(X). VB € FinPow(Y).
A~0AB=O0 — ord_iso(A,r,B,R) # 0"
using eqpoll_0_is_O empty_ord_iso by blast
moreover have "Vk € nat.
(VA € FinPow(X). VB € FinPow(Y).
A~k ANB =~k — ord_iso(A,r,B,R) # 0) —
(VC € FinPow(X). VD € FinPow(Y).
C ~ succ(k) A D =~ succ(k) — ord_iso(C,r,D,R) # 0O)"
proof -
{ fix k assume "k € nat"
assume A3: "VA € FinPow(X). VB € FinPow(Y).
A~k ANB =~ k — ord_iso(A,r,B,R) # 0"
have "VC € FinPow(X). VD € FinPow(Y).
C =~ succ(k) A D = succ(k) — ord_iso(C,r,D,R) # O"
proof -
{ fix C assume "C € FinPow(X)"
fix D assume "D € FinPow(Y)"
assume "C =~ succ(k)" "D = succ(k)"
then have "C # 0" and "D# 0"
using eqpoll_succ_imp_not_empty by auto
let ?Mc = "Maximum(r,C)"
let ?Mp = "Maximum(R,D)"
let ?2Cq = "C - {?Mc}"
let ?Dg = "D - {?Mp}"
from ‘C € FinPow(X)‘ have "C C X"
using FinPow_def by simp
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with A1 have "IsLinOrder(C,r)"
using ord_linear_subset by blast
from ‘D € FinPow(Y)‘ have "D C Y"
using FinPow_def by simp
with A1 have "IsLinOrder(D,R)"
using ord_linear_subset by blast
from A1 ‘C € FinPow(X)¢ ‘D € FinPow(Y)°
‘C #£ 0¢ ‘D# 0° have
"HasAmaximum(r,C)" and "HasAmaximum(R,D)"
using IsLinOrder_def fin_has_max
by auto
with A1 have "7Mz € C" and "?Mp € D"
using IsLinOrder_def Order_ZF_4_L3 by auto
with ‘C = succ(k)‘ ‘D = succ(k)‘ have
"?Cp ~ k" and "?Dy ~ k" using Diff_sing_eqpoll by auto
from ‘C € FinPow(X)‘ ‘D € FinPow(Y) ‘¢
have "?Cy; € FinPow(X)" and "7?Dg € FinPow(Y)"
using fin_rem_point_fin by auto
with A3 ‘?Cy =~ k¢ ‘?Dg =~ k¢ have
"ord_iso(7Cy,r,?Dg,R) # 0" by simp
with ‘IsLinOrder(C,r)¢ ‘IsLinOrder(D,R)°
‘HasAmaximum(r,C) ¢ ‘HasAmaximum(R,D) ¢
have "ord_iso(C,r,D,R) # 0"
by (rule rem_max_ord_iso)
} thus ?thesis by simp
ged
} thus 7thesis by blast
qed
ultimately show 7thesis by (rule ind_on_nat)
qed

Every two finite linearly ordered sets are order isomorphic.

lemma fin_ord_iso_ex:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A € FinPow(X)" "B € FinPow(Y)" and A3: "B ~ A"
shows "ord_iso(A,r,B,R) # 0"
proof -
from A2 obtain n where "n € nat" and "A ~ n"
using finpow_decomp by auto
from A3 ‘A = n‘ have "B = n" by (rule eqpoll_trans)
with A1 A2 ‘A =~ n‘ ‘n € nat‘ show "ord_iso(A,r,B,R) # 0"
using fin_order_iso by simp
qed

Existence and uniqueness of order isomorphism for two linearly ordered sets
with the same number of elements.

theorem fin_ord_iso_ex_uniq:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A € FinPow(X)" "B € FinPow(Y)" and A3: "B ~ A"
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shows "d!'f. f € ord_iso(A,r,B,R)"
proof
from assms show "df. f € ord_iso(A,r,B,R)"
using fin_ord_iso_ex by blast
fix fg
assume A4: "f € ord_iso(A,r,B,R)" "g € ord_iso(A,r,B,R)"
then have "converse(g) € ord_iso(B,R,A,r)"
using ord_iso_sym by simp
with ‘f € ord_iso(A,r,B,R)‘ have
I: "converse(g) 0 f € ord_iso(A,r,A,r)"
by (rule ord_iso_trans)
{ assume "A # O"
with A1 A2 I have "converse(g) 0 f = id(A)"
using fin_ord_auto_id by auto
with A4 have "f = g"
using ord_iso_def comp_inv_id_eq_bij by auto }
moreover
{ assume "A = 0"
then have "A ~ 0" using eqpoll_O_iff
by simp
with A3 have "B =~ 0" by (rule eqpoll_trans)
with A4 ‘A = 0° have
"f € ord_iso(0,r,0,R)" and "g € ord_iso(0,r,0,R)"
using eqpoll_O_iff by auto
then have "f = g" by (rule empty_ord_iso_uniq) }
ultimately show "f = g"
using ord_iso_def comp_inv_id_eq_bij
by auto
qed

end

16 Equivalence relations

theory EquivClassl imports EquivClass func_ZF ZF1
begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass theory. That development is very good and
all, but we really would prefer an approach contained within the a standard
ZF set theory, without extensions specific to Isabelle. That is why this
theory is written.

149



16.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation r C X x X and a function f: X —
X. The function f can be compatible (congruent) with = in the sense that if
two elements x, y are related then the values f(x), f(x) are also related. This
is especially useful if r is an equivalence relation as it allows to ”project”
the function to the quotient space X/r (the set of equivalence classes of
r) and create a new function F' that satifies the formula F([z],) = [f(x)],.
When f is congruent with respect to r such definition of the value of F' on the
equivalence class [z], does not depend on which = we choose to represent the
class. In this section we also consider binary operations that are congruent
with respect to a relation. These are important in algebra - the congruency
condition allows to project the operation to obtain the operation on the
quotient space.

First we define the notion of function that maps equivalent elements to equiv-
alent values. We use similar names as in the Isabelle’s standard EquivClass
theory to indicate the conceptual correspondence of the notions.

definition
"Congruent (r,f) =
Wxy. (x,y) €r — f@®,£(y)) € )"

Now we will define the projection of a function onto the quotient space. In
standard math the equivalence class of z with respect to relation r is usually
denoted [z],. Here we reuse notation r{z} instead. This means the image
of the set {z} with respect to the relation, which, for equivalence relations
is exactly its equivalence class if you think about it.

definition
"ProjFun(A,r,f) =
{{c,Ux€c. r*{f°(x)}). c € (A//r)}"

Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:
assumes Al: "equiv(A,r)" and A2: "C € A//r" and A3: "xeC"
shows "xecA"
proof -
from A2 have "C C |J (A//r)" by auto
with Al A3 show "xeA"
using Union_quotient by auto
qed

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:
assumes "ACX" shows "{r‘‘{x}. xe€A} C X//r"
using assms quotientI by auto
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If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:
assumes Al: "equiv(A,r)" "C € A//r" and A2: "xeC"
shows "r‘‘{x} = C"
proof -
from A1 A2 have "x € r¢‘{x}"
using EquivClass_1_L1 equiv_class_self by simp
with A2 have I: "r‘‘{x}NC # 0" by auto
from A1 A2 have "r‘‘{x} € A//r"
using EquivClass_1_L1 quotientI by simp
with A1 I show 7?thesis
using quotient_disj by blast
qed

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:
assumes "equiv(A,r)" "C € A//r" "xeC" 'yeC"
shows "(x,y) € r"
using assms EquivClass_1_L2 EquivClass_1_L1 equiv_class_eq_iff
by simp

Every z is in the class of y, then they are equivalent.

lemma EquivClass_1_L2B:
assumes Al: "equiv(A,r)" and A2: "yeA" and A3: "x € r‘‘{y}"
shows "(x,y) € r"
proof -
from A2 have "r‘‘{y} € A//r"
using quotientI by simp
with A1 A3 show ?7thesis using
EquivClass_1_L1 equiv_class_self equiv_class_nondisjoint by blast
qed

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:
assumes Al: "equiv(A,r)" and A2: "Congruent(r,f)"
and A3: "C € A//r" "xeC" "yeC"
shows "r‘‘{f‘(x)} = r*“{£°(y}"
proof -
from A1 A3 have "(x,y) € r"
using EquivClass_1_L2A by simp
with A2 have "(f‘(x),f‘(y)) € r"
using Congruent_def by simp
with Al show 7thesis using equiv_class_eq by simp
qed

The values of congruent functions are in the space.
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lemma EquivClass_1_L4:
assumes Al: "equiv(A,r)" and A2: "C € A//r" "xeC"
and A3: "Congruent(r,f)"
shows "f‘(x) € A"
proof -
from A1 A2 have "xcA"
using EquivClass_1_L1 by simp
with A1 have "(x,x) € r"
using equiv_def refl_def by simp
with A3 have "{(f‘(x),f‘(x)) € r"
using Congruent_def by simp
with Al show ?7thesis using equiv_type by auto
qed

Equivalence classes are not empty.

lemma EquivClass_1_L5:
assumes Al: "refl(A,r)" and A2: "C € A//r"
shows "C#0"
proof -
from A2 obtain x where I: "C = r‘‘{x}" and "xeA"
using quotient_def by auto
from Al ‘x€A¢ have "x € r¢‘{x}" using refl_def by auto
with I show 7thesis by auto
qed

To avoid using an axiom of choice, we define the projection using the ex-
pression | J,c 7({f(z)}). The next lemma shows that for congruent function
this is in the quotient space A/r.

lemma EquivClass_1_L6:
assumes Al: "equiv(A,r)" and A2: "Congruent(r,f)"
and A3: "C € A//r"
shows "(|JxeC. r*“{f(x)}) € A//x"
proof -
from A1 have "refl(A,r)" unfolding equiv_def by simp
with A3 have "C#0" using EquivClass_1_L5 by simp
moreover from A2 A3 Al have "VxeC. r‘‘{f‘(x)} € A//r"
using EquivClass_1_L4 quotientI by auto
moreover from A1l A2 A3 have
"Wx y. x€C A yeC — v {f(x)} = v {£°(yI"
using EquivClass_1_L3 by blast
ultimately show 7thesis by (rule ZF1_1_L2)
qed

Congruent functions can be projected.

lemma EquivClass_1_TO:
assumes "equiv(A,r)" "Congruent(r,f)"
shows "ProjFun(A,r,f) : A//r — A//xr"
using assms EquivClass_1_L6 ProjFun_def ZF_fun_from_total
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by simp

We now define congruent functions of two variables (binary funtions). The
predicate Congruent?2 corresponds to congruent?2 in Isabelle’s standard EquivClass
theory, but uses ZF-functions rather than meta-functions.

definition
"Congruent2(r,f) =
(Vx1 X2 y1 y2. (x1,X2) € T A (y1,y2) € T —
(£(x1,y1), £(x2,¥2) ) € )"

Next we define the notion of projecting a binary operation to the quotient
space. This is a very important concept that allows to define quotient
groups, among other things.

definition
"ProjFun2(A,r,f) =
{p,J z € fst(p)xsnd(p). r ‘{£(=2)}). p € (A//x)x(A//x) }"

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "C; € A//r" "Cy € A//x"
and A4: "z; € CixXCy" "zg € CyxCy"
shows "r ‘{f‘(z1)} = r{f(z2)}"
proof -
from A4 obtain x; y; x2 y2 where
"x1€C1" and "y1€Ca" and "z; = <X1,y1>" and
"xo€C1" and "yo€Co" and "z, = <X2,Y2>"
by auto
with A1 A3 have "(x1,x2) € r" and "(yi,y2) € r"
using EquivClass_1_L2A by auto
with A2 have "(f‘(x1,y1),f‘(x2,y2)) € "
using Congruent2_def by simp
with A1 ‘z; = (x1,y1)¢ ‘22 = (X2,y2)¢ show 7thesis
using equiv_class_eq by simp
qed

The values of congruent functions of two variables are in the space.

lemma EquivClass_1_L8:
assumes Al: "equiv(A,r)" and A2: "C; € A//r" and A3: "Cy; € A//r"
and A4: "z € CyxCy" and A5: "Congruent2(r,f)"
shows "f‘(z) € A"
proof -
from A4 obtain x y where "x€C;" and "ye€Cy" and "z = (x,y)"
by auto
with A1 A2 A3 have "xcA" and "yeA"
using EquivClass_1_L1 by auto
with A1 A4 have "(x,x) € r" and "(y,y) € r"
using equiv_def refl_def by auto
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with A5 have "{(f‘(x,y), £‘(x,y) ) € "
using Congruent2_def by simp
with A1 ‘z = (x,y)¢ show ?7thesis using equiv_type by auto
qed

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
f is a function.

lemma EquivClass_1_L8A:
assumes Al: "equiv(A,r)" and A2: "xe€A" ‘yeA"
and A3: "Congruent2(r,f)"
shows "f‘(x,y) € A"
proof -
from A1 A2 have "r‘‘{x} € A//r" "r‘‘{y} € A//r"
"<X,y> € r‘{x}xr* ({y}n
using equiv_class_self quotientI by auto
with Al A3 show ?7thesis using EquivClass_1_L8 by simp
qed

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "p € (A//r)x(A//T)"
shows "(|J z € fst(p)xsnd(p). r*‘{f(2)}) € A//r"
proof -
from A3 have "fst(p) € A//r" and "snd(p) € A//r"
by auto
with A1 A2 have
I: "Wz € fst(p)xsnd(p). £(z) € A"
using EquivClass_1_L8 by simp
from A3 A1 have "fst(p) xsnd(p) # 0"
using equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover from Al I have
"Wz € fst(p)xsnd(p). r ‘{f‘(z)} € A//r"
using quotientI by simp
moreover from Al A2 ‘fst(p) € A//r‘ ‘snd(p) € A//r¢ have
"Wz z9. z1 € fst(p)xsnd(p) A zy € fst(p)xsnd(p) —
r{f(z} = r {f(z)}"
using EquivClass_1_L7 by blast
ultimately show 7thesis by (rule ZF1_1_L2)
qed

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:
assumes "equiv(A,r)" "Congruent2(r,f)"
shows "ProjFun2(A,r,f) : (A//r)x(A//xr) — A//x"
using assms EquivClass_1_L9 ProjFun2_def ZF_fun_from_total
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by simp

The projection diagram commutes. I wish I knew how to draw this diagram
in LaTeX.

lemma EquivClass_1_L10:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "xeA" ‘yeA"
shows "ProjFun2(A,r,f) ‘(r‘‘{x},r‘‘{y}) = r “{f(x,y)}"
proof -
from A3 A1l have "r‘‘{x} x r‘‘{y} # o"
using quotientI equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover have
"Wz € r‘{xIxr‘‘{yr. r {£ (@)} = r L (x,y)}"
proof
fix z assume A4d: "z € r‘‘{x}xr‘‘{y}"
from A1 A3 have
"r “{x} € A//x" "r‘‘{y} € A//"
"(x,y) € £ {xIxr{y}"
using quotientI equiv_class_self by auto
with A1 A2 A4 show
Nyt :{ft (Z)} =r¢ ‘{f‘<X,y>}"
using EquivClass_1_L7 by blast
qed
ultimately have
"(Uz € v {xIxr Ay}, r{E @D = r Af(x, )"
by (rule ZF1_1_L1)
moreover have
"ProjFun2(A,r,f) ‘(r ‘{x},r*‘{y}) = Uz € r*‘{zxIxr {y}. r £ @M
proof -
from assms have
"ProjFun2(A,r,f) : (A//r)x(A//xr) — A//r"
“(r¢{x},r {y}) € (A//r)xA//x)"
using EquivClass_1_T1 quotientI by auto
then show ?7thesis using ProjFun2_def ZF_fun_from_tot_val
by auto
qed
ultimately show 7thesis by simp
qed

16.2 Projecting commutative, associative and distributive
operations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.

The projection of commutative operation is commutative.
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lemma EquivClass_2_L1: assumes
Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is commutative on} A"
and A4: "cl € A//xr" "c2 € A//r"
shows "ProjFun2(A,r,f)‘(cl,c2) = ProjFun2(A,r,f) ‘(c2,c1)"
proof -
from A4 obtain x y where D1:
el = rfx}" "c2 = r‘{y}"
"xeA" "yeA"
using quotient_def by auto
with A1 A2 have "ProjFun2(A,r,f) ‘(cl,c2) = r“‘{f‘(x,y)}"
using EquivClass_1_L10 by simp
also from A3 D1 have
nyt ‘{f‘<X,y>} =r¢ ‘{f‘<y,X>}"
using IsCommutative_def by simp
also from A1 A2 D1 have
"¢ {f(y,x)} = ProjFun2(A,r,f) ¢ (c2,cl)"
using EquivClass_1_L10 by simp
finally show ?7thesis by simp
qed

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:
assumes "equiv(A,r)" and "Congruent2(r,f)"
and "f {is commutative on} A"
shows "ProjFun2(A,r,f) {is commutative on} A//r"
using assms IsCommutative_def EquivClass_2_L1 by simp

The projection of an associative operation is associative.

lemma EquivClass_2_L2:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is associative on} A"
and A4: "c1 € A//r" "c2 € A//r" "c3 € A//x"

and A5: "g = ProjFun2(A,r,f)"
shows "g‘(g(c1,c2),c3) = g{cl,g‘(c2,c3)"
proof -

from A4 obtain x y z where D1:
"el = r {x}" "c2 = r ‘{y}" "c3 =r‘{z}"
"xeA" "yecA" "zeA"
using quotient_def by auto
with A3 have T1:"f‘(x,y) € A" "f¢(y,z) € A"
using IsAssociative_def apply_type by auto
with A1 A2 D1 A5 have
"g(g(cl,c2),c3) = r ALf(£(x,y),2)}"
using EquivClass_1_L10 by simp
also from D1 A3 have
"=t ‘{f‘<X,f‘<y,Z> >}n
using IsAssociative_def by simp
also from T1 A1 A2 D1 A5 have
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"= gcl,g(c2,c3))"
using EquivClass_1_L10 by simp
finally show ?thesis by simp
qed

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is associative on} A"
shows "ProjFun2(A,r,f) {is associative on} A//r"
proof -
let ?7g = "ProjFun2(A,r,f)"
from A1 A2 have
"?g € (A//x)x(A//xr) — A//c"
using EquivClass_1_T1 by simp
moreover from A1 A2 A3 have
"Wel € A//r.Vc2 € A//xr.Vc3 € A//r.
7g(7g‘(c1,c2),c3) = 7g‘(cl,?g (c2,c3)"
using EquivClass_2_L2 by simp
ultimately show ?thesis
using IsAssociative_def by simp
qed

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with respect
to the equivalence relation.

lemma EquivClass_2_L3:
assumes Al: "IsDistributive(X,A,M)"
and A2: "equiv(X,r)"
and A3: "Congruent2(r,A)" "Congruent2(r,M)"
and A4: "a € X//r" "b € X//r" "c € X//xr"
and A5: "A, = ProjFun2(X,r,A)" "M, ProjFun2(X,r,M)"
shows "M, ‘(a,A, (b,c)) = A,( M,*( M,“(a,c)) A
Mp( Ap‘(b,c),a ) = A ( My (b,a), ,a))"
proof
from A4 obtain x y z where "xeX" '"yeX" '"zeX"
"a = {xF" "b=1rH{y}" '"c =r{z}"
using quotient_def by auto
with A1 A2 A3 A5 show
"Mp‘(a,Ap‘(b,c)) = Ap( Mp*(a,b),M,(a,c))" and
"Mp( Ap‘(b,c),a) = Ay ( Mp“(b,a), M,(c,a))"
using EquivClass_1_L8A EquivClass_1_L10 IsDistributive_def
by auto
qed

a,b),
M, “(c

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.

lemma EquivClass_2_L4: assumes Al: "IsDistributive(X,A,M)"
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and A2: "equiv(X,r)"
and A3: "Congruent2(r,A)" "Congruent2(r,M)"
shows "IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))"
proof-
let 74, = "ProjFun2(X,r,A)"
let ?M, = "ProjFun2(X,r,M)"
from A1 A2 A3 have
"WaeX//r.VbeX//r.VceEX//T.
7™, ‘(a,?4,(b,c)) = 74,°(?M,“(a,b),?M, (a,c)) A
™, (74, (b,c),a) = 7A,(7M,(b,a),7M, (c,a))"
using EquivClass_2_L3 by simp
then show ?7thesis using IsDistributive_def by simp
qed

16.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r~1(r(A)). For equivalence relations saturated sets are unions of equiva-
lence classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B C X/r by saying that [z], € B iff x € A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [x],.

The following defines the notion of a saturated set. Recall that in Isabelle
r-¢“(A) is the inverse image of A with respect to relation r. This definition
is not specific to equivalence relations.

definition
"IsSaturated(r,A) = A = r-“‘(r‘“(a))"

For equivalence relations a set is saturated iff it is an image of itself.

lemma EquivClass_3_L1: assumes Al: "equiv(X,r)"
shows "IsSaturated(r,A) <— A = r <(A)"
proof
assume "IsSaturated(r,A)"
then have "A = (converse(r) 0 r)‘‘(A)"
using IsSaturated_def vimage_def image_comp
by simp
also from Al have "... = r‘<(A)"
using equiv_comp_eq by simp
finally show "A = r‘‘(A)" by simp
next assume "A = r¢‘(A)"
with A1 have "A = (converse(r) 0 r)‘‘(A)"
using equiv_comp_eq by simp
also have "... = r=““(r‘ ‘)"
using vimage_def image_comp by simp
finally have "A = r-“‘(r‘‘(A))" by simp
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then show "IsSaturated(r,A)" using IsSaturated_def
by simp
qed

For equivalence relations sets are contained in their images.

lemma EquivClass_3_L2: assumes Al: "equiv(X,r)" and A2: "ACX"
shows "A C r (A"
proof
fix a assume "acA"
with A1 A2 have "a € r‘‘{a}"
using equiv_class_self by auto
with ‘acA‘ show "a € r‘‘(A)" by auto
qed

” is an equivalence relation and a set A is

such that a € A and a ~ b implies b € A, then A is saturated with respect
to the relation.

The next lemma shows that if 7~

lemma EquivClass_3_L3: assumes Al: "equiv(X,r)"
and A2: "r C XxX" and A3: "ACX"
and A4: "VxeA. VyeX. (x,y) € r — yeA"
shows "IsSaturated(r,A)"
proof -
from A2 A4 have "r<‘(A) C A"
using image_iff by blast
moreover from Al A3 have "A C r ‘(A"
using EquivClass_3_L2 by simp
ultimately have "A = r‘‘(A)" by auto
with A1 show "IsSaturated(r,A)" using EquivClass_3_L1
by simp
qed

If AC X and A is saturated and z ~ y, then z € A iff y € A. Here we show
only one direction.

lemma EquivClass_3_L4: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX"
and A4: "(x,y) € "
and A5: "xeX" ‘yeA"
shows "xeA"
proof -
from A1 A5 have "x € r¢‘{x}"
using equiv_class_self by simp
with A1 A3 A4 A5 have "x € r‘‘(A)"
using equiv_class_eq equiv_class_self
by auto
with A1 A2 show "xeA"
using EquivClass_3_L1 by simp
qed

If AC X and A is saturated and x ~ y, then x € A iff y € A.
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lemma EquivClass_3_L5: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX"
and A4: "xeX" ‘yeX"
and A5: "(x,y) € r"
shows "x€A +— yeA"
proof
assume "ycA"
with assms show "x€A" using EquivClass_3_L4
by simp
next assume "xcA"
from A1 A5 have "(y,x) € r"
using equiv_is_sym by blast
with Al A2 A3 A4 ‘xcA¢ show "yeA"
using EquivClass_3_L4 by simp
qed

If A is saturated then x € A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX" and A4: "xe&X"
and A5: "B = {r‘‘{x}. xcA}"
shows "x€A +— r‘‘{x} € B"
proof
assume "xcA"
with A5 show "r‘‘{x} € B" by auto
next assume "r‘‘{x} € B"
with A5 obtain y where "y € A" and "r‘‘{x} = r‘{y}"
by auto
with A1 A3 have "(x,y) € r"
using eq_equiv_class by auto
with A1 A2 A3 A4 ‘y € A¢ show "xeA"
using EquivClass_3_L4 by simp
qed

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or. Note that we don’t really care what Xor is here,
this is true for any predicate.

lemma EquivClass_3_L7: assumes "equiv(X,r)"
and "IsSaturated(r,A)" and "ACX"
and "xeX" ‘"yeX"
and "B = {r‘‘{x}. x€A}"
and "(x€A) Xor (yeA)"
shows "(r¢‘{x} € B) ZXor (r‘‘{y} € B)"
using assms EquivClass_3_L6 by simp

end
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17 Finite sequences

theory FiniteSeq_ZF imports Nat_ZF_IML funcl
begin

This theory treats finite sequences (i.e. maps n — X, where n = {0,1,..,n—
1} is a natural number) as lists. It defines and proves the properties of basic
operations on lists: concatenation, appending and element etc.

17.1 Lists as finite sequences

A natural way of representing (finite) lists in set theory is through (finite)
sequences. In such view a list of elements of a set X is a function that maps
the set {0,1,..n—1} into X. Since natural numbers in set theory are defined
so that n = {0, 1,..n—1}, a list of length n can be understood as an element
of the function space n — X.

We define the set of lists with values in set X as Lists(X).

definition
"Lists(X) = [Un€nat. (a—-X)"

The set of nonempty X-value listst will be called NELists(X).

definition
"NELists(X) = [Uné€nat. (succ(n)—X)"

We first define the shift that moves the second sequence to the domain
{n,.,n + k — 1}, where n,k are the lengths of the first and the second
sequence, resp. To understand the notation in the definitions below recall
that in Isabelle/ZF pred(n) is the previous natural number and denotes the
difference between natural numbers n and k.

definition
"ShiftedSeq(b,n) = {(j, b‘(j #- n)). j € NatInterval(n,domain(b))}"

We define concatenation of two sequences as the union of the first sequence
with the shifted second sequence. The result of concatenating lists a and b
is called Concat(a,b).

definition

"Concat(a,b) = a U ShiftedSeq(b,domain(a))"

For a finite sequence we define the sequence of all elements except the first
one. This corresponds to the ”tail” function in Haskell. We call it Tail here
as well.

definition
"Tail(a) = {(k, a‘(succ(k))). k € pred(domain(a))l}"
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A dual notion to Tail is the list of all elements of a list except the last one.
Borrowing the terminology from Haskell again, we will call this Init.

definition
"Init(a) = restrict(a,pred(domain(a)))"

Another obvious operation we can talk about is appending an element at
the end of a sequence. This is called Append.

definition
"Append(a,x) = a U {(domain(a),x)}"

If lists are modeled as finite sequences (i.e. functions on natural intervals
{0,1,..,n — 1} = n) it is easy to get the first element of a list as the value
of the sequence at 0. The last element is the value at n — 1. To hide this
behind a familiar name we define the Last element of a list.

definition
"Last(a) = a‘(pred(domain(a)))"

Shifted sequence is a function on a the interval of natural numbers.

lemma shifted_seq_props:
assumes Al: "n € nat" "k € nat" and A2: "b:k—X"
shows
"ShiftedSeq(b,n): NatInterval(n,k) — X"
"Vi € NatInterval(n,k). ShiftedSeq(b,n) ‘(i) = b‘(i #- n)"
"V jek. ShiftedSeq(b,n)‘(n #+ j) = b* ()"
proof -
let ?7I = "NatInterval(n,domain(b))"
from A2 have Fact: "?I = NatInterval(n,k)" using funcl_1_L1 by simp
with A1 A2 have "Vje ?I. b‘(j #- n) € X"
using inter_diff_in_len apply_funtype by simp
then have
"{{(j, p(j #- n)). j € ?I} : ?I — X" by (rule ZF_fun_from_total)
with Fact show thesis_1: "ShiftedSeq(b,n): NatInterval(n,k) — X"
using ShiftedSeq_def by simp
{ fix i
from Fact thesis_1 have "ShiftedSeq(b,n): 7?I — X" by simp
moreover
assume "i € NatInterval(m,k)"
with Fact have "i € ?7I" by simp
moreover from Fact have
"ShiftedSeq(b,n) = {(i, b‘(i #- n)). i € ?I}"
using ShiftedSeq_def by simp
ultimately have "ShiftedSeq(b,n) ‘(i) = b‘(i #- n)"
by (rule ZF_fun_from_tot_val)
} then show thesisi:
"Wi € NatInterval(n,k). ShiftedSeq(b,n) ‘(i) = b‘(i #- n)"
by simp
{ fix ]
let 7i = "n #+ j"
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assume A3: "jek"
with A1 have "j € nat" using elem_nat_is_nat by blast
then have "7i #- n = j" using diff_add_inverse by simp
with A3 thesisl have "ShiftedSeq(b,n) ‘(?7i) = b‘(j"
using NatInterval_def by auto

} then show "V jck. ShiftedSeq(b,n)‘(n #+ j) = b (j)"

by simp
qed

Basis properties of the contatenation of two finite sequences.

theorem concat_props:
assumes Al: "n € nat" "k € nat" and A2: "a:n—X" "b:k—X"
shows
"Concat(a,b): n #+ k — X"
"Wi€n. Concat(a,b) ‘(i) = a“‘(i)"
"Vi € NatInterval(n,k). Concat(a,b) ‘(i) = b‘(i #- n)"
"Vj € k. Concat(a,b) ‘(n #+ j) = b ()"
proof -
from A1 A2 have
"a:n—X" and I: "ShiftedSeq(b,n): NatInterval(n,k) — X"
and "n N NatInterval(n,k) = O"
using shifted_seq_props length_start_decomp by auto
then have
"a U ShiftedSeq(b,n): n U NatInterval(n,k) — X U X"
by (rule fun_disjoint_Un)
with A1 A2 show "Concat(a,b): n #+ k — X"
using funcl_1_L1 Concat_def length_start_decomp by auto
{ fix i assume "i € n"
with A1 I have "i ¢ domain(ShiftedSeq(b,n))"
using length_start_decomp funcl_1_L1 by auto
with A2 have "Concat(a,b) ‘(i) = a‘(i)"
using funcl_1_L1 fun_disjoint_applyl Concat_def by simp
thus "Vien. Concat(a,b) ‘(i) = a‘(i)" by simp
fix i assume A3: "i € NatInterval(n,k)"
with A1 A2 have "i ¢ domain(a)"
using length_start_decomp funcl_1_L1 by auto
with A1 A2 A3 have "Concat(a,b) ‘(i) = b‘(i #- n)"
using funcl_1_L1 fun_disjoint_apply2 Concat_def shifted_seq_props

-

by simp
} thus II: "Vi € NatInterval(n,k). Concat(a,b) ‘(i) = b‘(i #- n)"
by simp
{ fix ;
let 7i = "n #+ j"

assume A3: "jek"
with A1 have "j € nat" using elem_nat_is_nat by blast
then have "?i #- n = j" using diff_add_inverse by simp
with A3 ITI have "Concat(a,b) ‘(?i) = b (j)"
using NatInterval_def by auto
} thus "Vj € k. Concat(a,b)‘(n #+ j) = b (j"
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by simp
qed

Properties of concatenating three lists.

lemma concat_concat_list:

assumes Al: "n € nat" "k € nat" "m € nat" and
A2: "a:n—X" "b:k—X" "c:m—X" and

A3: "d = Concat(Concat(a,b),c)"

shows

"d : n #+k #+ m — X"

"Wji €mn. d(G) =a‘(G"

"Wj € k. d(n #+ j) = b ()"

"Wj Em. d(n #+ k #+ j) = c ("

proof -
from A1 A2 have I:
"n #+ k € nat" "m € nat"
"Concat(a,b): n #+ k — X" "c:m—X"

using concat_props by auto
with A3 show "d: n #+k #+ m — X"
using concat_props by simp
from I have II: "Vi € n #+ k.
Concat(Concat(a,b),c) ‘(i) = Concat(a,b) ‘(i)"
by (rule concat_props)
{ fix j assume A4: "j € n"
moreover from A1l have "n C n #+ k" using add_nat_le by simp
ultimately have "j € n #+ k" by auto
with A3 II have "d‘(j) = Concat(a,b)‘(j)" by simp
with A1 A2 A4 have "d“(j) = a‘(j)"
using concat_props by simp
thus "Vj € n. d°(j) = a“(j)" by simp
fix j assume A5: "j € k"
with A1 A3 II have "d‘(n #+ j) = Concat(a,b)‘(n #+ j)"
using add_lt_mono by simp
also from A1 A2 A5 have "... = b‘(j)"
using concat_props by simp
finally have "d‘(n #+ j) = b‘(j)" by simp
} thus "Vj € k. d(n #+ j) = b*(j)" by simp
from I have "Vj € m. Concat(Concat(a,b),c)‘(n #+ k #+ j) = c‘(j)"
by (rule concat_props)
with A3 show "Vj € m. d‘(n #+ k #+ j) = c ()"
by simp
qed

e

Properties of concatenating a list with a concatenation of two other lists.

lemma concat_list_concat:

assumes Al: "n € nat" "k € nat" "m € nat" and
A2: "a:n—X" "b:k—X" "c:m—X" and

A3: "e = Concat(a, Concat(b,c))"

shows
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"e : n #+k #+ m — X"
"Wj €n. e (j) =a‘(@G"
"Wj € k. e‘(n #+ j) = Db ("
"Wj €m. e‘(n #+ k #+ j) = c ("
proof -
from A1 A2 have I:
"n € nat" "k #+ m € nat"
"a:n—X" "Concat(b,c): k #+ m — X"
using concat_props by auto
with A3 show '"e : n #+k #+ m — X"
using concat_props add_assoc by simp
from I have "Vj € n. Concat(a, Concat(b,c))‘(j) = a‘(j)"
by (rule concat_props)
with A3 show "Vj € n. e‘(j) = a‘(j)" by simp
from I have II:
"Vj € k #+ m. Concat(a, Concat(b,c))‘(n #+ j) = Concat(b,c) (j)"
by (rule concat_props)
{ fix j assume A4d: "j € k"
moreover from Al have "k C k #+ m" using add_nat_le by simp
ultimately have "j € k #+ m" by auto
with A3 II have "e‘(n #+ j) = Concat(b,c)‘(j)" by simp
also from A1 A2 A4 have "... = b‘(j)"
using concat_props by simp
finally have "e‘(n #+ j) = b‘(j)" by simp
thus "Vj € k. e‘(n #+ j) = b‘(j)" by simp
fix j assume A5: "j € m"
with A1 IT A3 have "e‘(n #+ k #+ j) = Concat(b,c) ‘(k #+ j)"
using add_lt_mono add_assoc by simp
also from A1 A2 A5 have "... = c‘(j)"
using concat_props by simp
finally have "e‘(n #+ k #+ j) = c‘(j)" by simp
} then show "Vj € m. e‘(n #+ k #+ j) = c‘ ()"
by simp
qed

-

Concatenation is associative.

theorem concat_assoc:

assumes Al: "n € nat" "k € nat" "m € nat" and

A2: "a:n—X" "b:k—X" "c:m—X"

shows "Concat (Concat(a,b),c) = Concat(a, Concat(b,c))"
proof -

let ?7d = "Concat(Concat(a,b),c)"

let 7e = "Concat(a, Concat(b,c))"

from A1 A2 have

"?7d : n #+k #+ m — X" and "7e : n #+k #+ m — X"

using concat_concat_list concat_list_concat by auto
moreover have "Vi € n #+k #+ m. 7d‘(i) = 7e‘(1)"
proof -

{ fix i assume "i € n #+k #+ m"
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moreover from Al have
"n #+k #+ m = n U NatInterval(n,k) U NatInterval(n #+ k,m)"
using adjacent_intervals3 by simp
ultimately have
"i € nV i € NatInterval(n,k) V i € NatInterval(n #+ k,m)"
by simp
moreover
{ assume "i € n"
with A1 A2 have "7d‘(i) = 7e‘(i)"
using concat_concat_list concat_list_concat by simp }
moreover
{ assume "i € NatInterval(n,k)"
then obtain j where "jek" and "i = n #+ j"
using NatInterval_def by auto
with Al A2 have "7d‘(i) = 7e‘(i)"
using concat_concat_list concat_list_concat by simp }
moreover
{ assume "i € NatInterval(n #+ k,m)"
then obtain j where "j € m" and "i = n #+ k #+ j"
using NatInterval_def by auto
with A1 A2 have "7d‘(i) = 7e‘(i)"
using concat_concat_list concat_list_concat by simp }
ultimately have "7d‘(i) = 7e‘(i)" by auto
} thus ?thesis by simp
qed
ultimately show "?d = 7e" by (rule func_eq)
qed

Properties of Tail.

theorem tail_props:
assumes Al: "n € nat" and A2: "a: succ(n) — X"
shows
"Tail(a) : n — X"
"Wk € n. Tail(a) ‘(k) = a‘(succ(k))"
proof -
from A1 A2 have "Vk € n. a‘(succ(k)) € X"
using succ_ineq apply_funtype by simp
then have "{(k, a‘(succ(k))). kX € n} : n — X"
by (rule ZF_fun_from_total)
with A2 show I: "Tail(a) : n — X"
using funcl_1_L1 pred_succ_eq Tail_def by simp
moreover from A2 have "Tail(a) = {(k, a‘(succ(k))). k € n}"
using funcl_1_L1 pred_succ_eq Tail_def by simp
ultimately show "Vk € n. Tail(a)‘(k) = a‘(succ(k))"
by (rule ZF_fun_from_tot_val0)
qed

Properties of Append. It is a bit surprising that the we don’t need to assume
that n is a natural number.
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theorem append_props:
assumes Al: "a: n — X" and A2: "xeX" and A3: "b = Append(a,x)"
shows
"b : succ(n) — X"
"Vkeén. b(k) = a‘ (k)"
llbl (n) - X"
proof -
note Al
moreover have I: "n ¢ n" using mem_not_refl by simp
moreover from Al A3 have II: "b = a U {(n,x)}"
using funcl_1_L1 Append_def by simp
ultimately have "b : n U {n} — X U {x}"
by (rule funcl_1_L11D)
with A2 show "b : succ(n) — X"
using succ_explained set_elem_add by simp
from A1 I IT show "Vkén. bé(k) = a‘(k)" and "b‘(n) = x"
using func1l_1_L11D by auto
qed

A special case of append_props: appending to a nonempty list does not
change the head (first element) of the list.

corollary head_of_append:
assumes "n€ nat" and "a: succ(n) — X" and "xeX"
shows "Append(a,x)‘(0) = a‘(0)"
using assms append_props empty_in_every_succ by auto

Tail commutes with Append.

theorem tail_append_commute:
assumes Al: "n € nat" and A2: "a: succ(n) — X" and A3: "xeX"
shows "Append(Tail(a),x) = Tail(Append(a,x))"
proof -
let 7b = "Append(Tail(a),x)"
let ?c = "Tail (Append(a,x))"
from A1 A2 have I: "Tail(a) : n — X" using tail_props
by simp
from A1 A2 A3 have
"succ(n) € nat" and "Append(a,x) : succ(succ(n)) — X"
using append_props by auto
then have II: "Vk € succ(n). 7c‘(k) = Append(a,x)‘(succ(k))"
by (rule tail_props)
from assms have
"?b : succ(n) — X" and "7c : succ(n) — X"
using tail_props append_props by auto
moreover have "Vk € succ(n). ?b‘(k) = 7c‘(k)"
proof -
{ fix k assume "k € succ(n)"
hence "k € n V k = n" by auto
moreover
{ assume A4: "k € n"
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with assms IT have "7c‘(k) = a‘(succ(k))"
using succ_ineq append_props by simp
moreover
from A3 I have "Vkén. 7b‘(k) = Tail(a) (k)"
using append_props by simp
with A1 A2 A4 have "7b‘(k) = a‘(succ(k))"
using tail_props by simp
ultimately have "?b‘(k) = ?c‘(k)" by simp }
moreover
{ assume A5: "k = n"
with A2 A3 I II have "7b‘(k) =
using append_props by auto }
ultimately have "7b‘ (k) =
} thus ?thesis by simp
qed
ultimately show "7?b = 7c" by (rule func_eq)
qed

?C( (k)ll

?7c‘ (k)" by auto

Properties of Init.

theorem init_props:
assumes Al: "n € nat" and A2: "a: succ(n) — X"
shows
"Init(a) : n — X"
"Wken. Init(a) (k) = a‘(k)"
"a = Append(Init(a), a‘(m))"
proof -
have "n C succ(n)" by auto
with A2 have "restrict(a,n): n — X"
using restrict_type2 by simp
moreover from Al A2 have I: "restrict(a,n) = Init(a)"
using funcl_1_L1 pred_succ_eq Init_def by simp
ultimately show thesisl: "Init(a) : n — X" by simp
{ fix k assume "ken"
then have "restrict(a,n) (k) = a‘(k)"
using restrict by simp
with I have "Init(a)‘(k) = a‘(k)" by simp
} then show thesis2: "Vkén. Init(a)‘(k) = a‘(k)" by simp
let ?b = "Append(Init(a), a‘(n))"
from A2 thesisl have II:
"Init(a) : n — X" "a‘(n) € X"
"?b = Append(Init(a), a‘(n))"
using apply_funtype by auto
note A2
moreover from II have "7?b : succ(n) — X"
by (rule append_props)
moreover have "Vk € succ(n). a‘(k) = ?b‘ (k)"
proof -
{ fix k assume A3: "k € n"
from II have "Vjen. ?b‘(j) = Init(a)‘(j)"
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by (rule append_props)
with thesis2 A3 have "a‘(k) = 7b‘(k)" by simp }
moreover
from II have "7b‘(n) = a‘(n)"
by (rule append_props)
hence " a‘(n) = 7b‘(n)" by simp
ultimately show "Vk € succ(n). a‘(k) = b (k)"
by simp
qed
ultimately show "a = 7b" by (rule func_eq)
qed

If we take init of the result of append, we get back the same list.

lemma init_append: assumes Al: "n € nat" and A2: "a:n—X" and A3: "x
e X"

shows "Init(Append(a,x)) = a"
