
Tutorial: Object in fluid ∗

September 1, 2015

Contents

1 Introduction 1

2 Basic set up 2

3 Running the simulation 7

4 Writing out data 7

5 Visualization 8

6 Other available OIF commands 9

1 Introduction

This tutorial introduces some of the features of ESPResSo module Object in fluid (OIF).
Even though ESPResSo was not primarily intended to work with closed objects, it ap-
pears very suitable when one wants to model closed objects with elastic properties,

∗For ESPResSo 3.3.1

1

especially if they are immersed in a moving fluid. Here we offer a step by step Tcl
tutorial that will show you how to use this module. The resulting code can be run using
Espresso <file> from the ESPResSo source directory. It produces .vtk files that can
then be visualized using Paraview.

The OIF module was developed for simulations of red blood cells flowing through mi-
crofluidic devices and therefore the elasticity features were designed with this application
in mind. However, they are completely tunable and can be modified easily to allow the
user model any elastic object moving in fluid flow.

2 Basic set up

In order to be able to work with elastic objects, one needs to configure ESPResSo with
the following options in myconfig.hpp:
#define LB (or #define LB GPU)
#define LB BOUNDARIES (or #define LB BOUNDARIES GPU)
#define EXTERNAL FORCES
#define MASS
#define CONSTRAINTS
#define BOND ANGLE
#define VOLUME FORCE
#define AREA FORCE GLOBAL

To create an elastic object, we also need a triangulation of the surface of this object.
Sample sphere and red blood cell are provided in the directory scripts/input. User can
create her own in gmsh, salome or any other meshing software. The required format is
as follows:

The file some_nodes.dat should contain triplets of floats (one triplet per line), where
each triplet represents the x, y and z coordinates of one node of the surface triangulation.
No additional information should be written in this file, so this means that the number of
lines equals the number of surface nodes. The coordinates of the nodes should be speci-
fied in such a way that the approximate center of mass of the object corresponds to the
origin (0,0,0). This is for convenience when placing the objects at desired locations later.

The file some_triangles.dat should also contain triplets of numbers, this time inte-
gers. These refer to the IDs of the nodes in the some_nodes.dat file and specify which

2

three nodes form a triangle together. Please, note that the nodes’ IDs start at 0, i.e. the
node written in the first line of some_nodes.dat has ID 0, the node in the second line,
has ID 1, etc.

We can start our script by specifying these files:

set fileNodes "input/cell_nodes.dat"

set fileTriangles "input/cell_triangles.dat"

And continue with setting up some molecular dynamics parameters of the simu-
lation engine:

setmd time_step 0.1

setmd skin 0.4

thermostat off

The skin depth skin is a parameter for the link–cell system, which tunes its perfor-
mance, but will not be discussed here in detail. The one important thing a user needs
to know about it is that it has to be strictly less than half the grid size.

Next we need to specify the simulation box:

set boxX 50

set boxY 22

set boxZ 20

setmd box_l $boxX $boxY $boxZ

and define the walls and boundaries. For clarity, these have been placed in a sep-
arate file boundaries.tcl, which we’ll go over in the next subsection. The source
code of this boundaries script is included using the command

source boundaries.tcl

but note, that the boundaries could have been specified directly at this point.

Now comes the initialization of OIF module using

oif_init

This command creates all the global variables and lists needed for templates and
objects that will come afterwards. Elastic objects cannot be created directly. Each
one has to correspond to a template that has been created first. The advantage
of this approach is clear when creating many objects of the same type that only
differ by e.g. position or rotation, because in such case it significantly speeds up
the creation of objects that are just copies of the same template. The following

3

command creates a template

oif_create_template template-id 0 nodes-file $fileNodes \

triangles-file $fileTriangles stretch 3.0 3.0 3.0 \

ks 0.05 kb 0.01 kal 0.01 kag 0.01 kv 10.0

Each template has to have a unique ID specified using keyword template-id. The
IDs should start at 0 and increase consecutively. Another two mandatory arguments
are nodes-file and triangles-file that specify data files with desired triangulation.
All other arguments are optional: stretch defines stretching in x, y, z direction and
ks, kb, kal, kag, kv specify the elastic properties of the object (stretching, bending,
local area conservation, global area conservation, volume conservation respectively). The
keywords can come in any order.

Once we have the template, we can start creating objects:

oif_add_object object-id 0 template-id 0 origin 5 15 5 \

rotate 0 0 [expr $pi/2] part-type 0 mass 1

oif_add_object object-id 1 template-id 0 origin 5 5 15 \

rotate 0 0 0 part-type 1 mass 1

Each object has to have a unique ID specified using keyword object-id. The IDs
should start at 0 and increase consecutively. Another three mandatory arguments are
template-id, origin and part-type. template-id specifies which template will be
used for this object. origin gives placement of object’s center in the simulation box.
And part-type assigns the particle type to all nodes of the given object. It is generally
a good idea to specify a different part-type for different objects since it can be then
used to set up interactions among objects. The optional arguments are rotate and
mass. Rotate takes three arguments - angles in radians - that determine how much the
object is rotated around the x, y, z axes. (Note: if you want to use the variable $pi,
you need to specify it beforehand, i.e. set pi 3.14159265359). The optional keyword
mass takes one value and this mass will be assigned to each surface node of the object.

The interactions among objects are specified using

inter 0 1 soft-sphere 0.005 2.0 0.3 0.0

where after inter come the particle types of the two objects and soft-sphere

with four parameters stands for the ”bouncy” interactions between the objects,
once they come sufficiently close. (There are also other interaction types available
in ESPResSo.) Similar interaction is defined with the boundaries:

inter 0 10 soft-sphere 0.0001 1.2 0.1 0.0

inter 1 10 soft-sphere 0.0001 1.2 0.1 0.0

4

Here 10 (the second number after keyword inter) is the the type of all boundaries
and obstacles.

Finally, we specify the fluid, either by

lbfluid grid 1 dens 1.0 visc 1.5 tau 0.1 friction 0.5

or

lbfluid gpu grid 1 dens 1.0 visc 1.5 tau 0.1 friction 0.5

depending on the available computational resources. (The GPU computation can be
two orders of magnitude faster than the CPU.)

Specification of boundaries

As was previously mentioned, all the boundaries and obstacles are conveniently grouped
in separate file boundaries.tcl. This file contains two output procedures - one writes
a rhomboid, another a cylinder into a .vtk file for later visualization. Below these pro-
cedures, one can specify the geometry of the channel. Here we only go over rhomboids
and cylinders, but note that other boundary types are available in ESPResSo.

The rhomboid is a 3D structure specified by one corner and three vectors originating
from this corner. It can be a box and in that case the three vectors give the length,
width and height. However, there is no requirement that the vectors are perpendicular
(to each other or to the walls). It is a standard ESPResSo command.

Cylinder is specified by its center, radius, normal vector, and length. The length
is the distance from center to either base, therefore it is only half the total ”height”.
Note: the included boundaries.tcl script can only output cylinder with (0,0,1) normal.

Each wall and obstacle has to be specified separately as a fluid boundary and as
a particle constraint. The former enters the simulation as a boundary condition for
the fluid, the latter serves for particle-boundary interactions. Sample cylinder and
rhomboid can then be defined as follows:

5

obstacle cylinder1

set cX 16; set cY 17; set cZ 10;

set nX 0; set nY 0; set nZ 1;

set L 9

set r 3

set cylFile "output/cylinder1.vtk"

set n 20

output_vtk_cylinder $cX $cY $cZ $nX $nY $nZ $r $L $n $cylFile

constraint cylinder center $cX $cY $cZ axis $nX $nY $nZ radius $r \

length $L direction 1 type 10

lbboundary cylinder center $cX $cY $cZ axis $nX $nY $nZ radius $r \

length $L direction 1

obstacle rhomboid1

set corX 25; set corY 1; set corZ 1;

set aX 5; set aY 0; set aZ 0;

set bX 0; set bY 20; set bZ 0;

set cX 0; set cY 0; set cZ 10;

set rhomFile "output/rhomboid1.vtk"

output_vtk_rhomboid $corX $corY $corZ $aX $aY $aZ $bX $bY $bZ \

$cX $cY $cZ $rhomFile

constraint rhomboid corner $corX $corY $corZ a $aX $aY $aZ b $bX $bY $bZ \

c $cX $cY $cZ direction 1 type 10

lbboundary rhomboid corner $corX $corY $corZ a $aX $aY $aZ b $bX $bY $bZ \

c $cX $cY $cZ direction 1

Note that the cylinder also has an input parameter n. This specifies number of rect-
angular faces on the side. The direction 1 determines that the fluid is on the ”outside”.

To create a rectangular channel, there are two possibilities. Either the walls are spec-
ified as the lbboundary wall and constraint wall with normal and distance from
origin. Alternatively, the channel can be built using four flat rhomboids as can be seen
in the picture above.

Another way how to work with boundaries, is to set them up using lbboundary

and constraint, make sure each boundary has a different type (the object-boundary
interactions have to be modified accordingly) and then following command can be
used for output of all of them at once:

lbfluid print vtk boundary "boundary.vtk"

The differences in visualization in these two approaches are discussed later in this

6

tutorial.

3 Running the simulation

One last thing needed before we can proceed to the main part of the simulation
code, is to get the fluid moving. This can be done by setting the velocity of the
individual lbnodes on one side of the channel and letting the flow develop, but this
is not a very convenient setup because it has to be done at every integration step
and the tcl-C communication slows down the computation. The alternative is to set
up a wall/rhomboid with velocity. This does not mean that the physical boundary
is moving, but rather that it transfers specified momentum onto the fluid. This can
be done using the command

lbboundary rhomboid velocity 0.01 0 0 corner 0 1 1 a 1 1 1 \

b 0 [expr $boxY-1] 1 c 0 1 [expr $boxZ-1] direction 1

Now we can integrate the system:

set steps 200

set counter 0

while { $counter<150} {

set cycle [expr $counter*$steps]

puts "cycle $cycle"

integrate $steps

incr counter

}

The script will print out a cycle number every 200 MD steps.

4 Writing out data

We have already discussed how to output the walls and obstacles for later visualiza-
tion, but we also need output for fluid and objects. The fluid output is done using
the standard ESPResSo command

lbfluid print vtk velocity "output/fluid$cycle.vtk"

and for object output we have

oif_object_output object-id 0 vtk-pos "output/output_file.vtk"

7

This will save the positions of all surface nodes into the .vtk output file. The
modified integration loop now looks like this:

while { $counter<150} {

set cycle [expr $counter*$steps]

puts "cycle $cycle"

lbfluid print vtk velocity "output/fluid$cycle.vtk"

oif_object_output object-id 0 vtk-pos "output/cell0_$cycle.vtk"

oif_object_output object-id 1 vtk-pos "output/cell1_$cycle.vtk"

integrate $steps

incr counter

}

where each object has its own output file and a new file is written every $steps steps.

5 Visualization

For visualization we suggest the free software Paraview. All .vtk files (boundaries, fluid,
objects at all time steps) can be loaded at the same time. The loading is a two step pro-
cess, because only after pressing the Apply button, are the files actually imported. Using
the eye icon to the left of file names, one can turn on and off the individual objects and/or
boundaries. It is also possible to do this when one imports all the boundaries from a sin-
gle .vtk file (created using command lbfluid print vtk boundary "boundary.vtk"),
however only when each boundary had been assigned a unique type number and is then
selected in the bottom left menu by this number.

Fluid can be visualized using Filters/Alphabetical/Glyph (or other options from this
menu. Please, refer to the Paraview user’s guide for more details).

Note, that Paraview does not automatically reload the data if they have been changed
in the input folder, but a useful thing to know is that the created filters can be ”recy-
cled”. Once you delete the old data, load the new data and right-click on the existing
filters, you can re-attach them to the new data.

It is a good idea to output and visualize the boundaries and objects just prior to
running the actual simulation, to make sure that the geometry is correct and no objects
intersect with any boundaries. This would cause ”particle out of range” error and crash
the simulation.

8

6 Other available OIF commands

The OIF commands that we have covered so far are

oif_init

oif_create_template

oif_add_object

oif_object_output

Here we want to describe the rest of the currently available OIF commands and note
that there are more still being added. We would be pleased to hear from you about any
suggestions on further functionality.

oif_info prints out information about all global variables, currently available tem-
plates and added objects.

oif_mesh_analyze takes two mandatory arguments: nodes-file nodes.dat and
triangles-file triangles.dat. Their required format is discussed at the beginning
of this document, in Basic set up section. The three optional arguments: orientation,
repair and flip determine what will be done with the mesh. orientation checks
whether all triangles of the surface mesh are properly oriented, repair corrects the
orientation of those that are not and flip flips the orientation of all triangles in the
triangulation.

oif_object_analyze has only one mandatory argument, object-id 0, and the op-
tional arguments specify what function will be performed. origin outputs the location
of the center of the object, pos-bounds b-name computes the six extremal coordinates
of the object. More precisely, runs through the all mesh points and remembers the min-
imal and maximal x-coordinate, y-coordinate and z-coordinate. If b-name is the name
of one of these: z-min, z-max, x-min, x-max, y-min, y-max then the procedure re-
turns one number according to the value of b-name. If b-name is all, then the procedure
returns a list of six numbers, namely Xmin, Xmax, Ymin, Ymax, Zmin, Zmax. volume

outputs the volume of the object, surface-area outputs the surface of the object and
velocity outputs the average velocity of the object by calculating the average velocity
of object’s mesh points.

oif_object_set also has only one mandatory argument object-id 0. The optional
arguments are: force valX valY valZ, which sets the force vector (valX,valY,valZ) to
all mesh nodes of the object. Setting is done using ESPResSo command part $i set

ext_force $valX $valY $valZ. Note, that this command sets the external force in each
integration step. So if you want to use the external force only in one iteration, you need
to set zero external force in the following integration step. origin posX posY posZ

moves the object in such a way that the origin has coordinates posX posY posZ.

9

mesh-nodes "mesh-nodes.dat" deforms the object in such a way that its origin stays
unchanged, however the relative positions of the mesh points are taken from file mesh-
nodes.dat. (The file mesh-nodes.dat should contain the coordinates of the mesh points
with the origin’s location at (0,0,0).) The command also checks whether number of lines
in the mesh-nodes.dat file is the same as the corresponding value from oif nparticles.
kill-motion stops all the particles in the object (analogue to the kill_motion com-
mand in ESPResSo).

More information can be found in the OIF documentation and on our website www.cell-
in-fluid.weebly.com.

10

	Introduction
	Basic set up
	Running the simulation
	Writing out data
	Visualization
	Other available OIF commands

