
Cybernetics Oriented Language

(CYBOL)

An interpretable Knowledge Modelling- and Programming Language

Christian Heller

Cybernetics Oriented Language

(CYBOL)

An interpretable Knowledge Modelling- and Programming Language

Version 2.0, Draft 2007-07-31

Ilmenau

Cataloging-in-Publication Data

Christian Heller.

Cybernetics Oriented Language (CYBOL):

An interpretable Knowledge Modelling- and Programming Language

Version 2.0, Draft 2007-07-31

Ilmenau: Tux Tax, 2007

Information about this specification

http://www.cybop.net, http://www.tuxtax.de

Copyright c© 2002-2007. Christian Heller. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-Cover Texts.

A copy of the license is included in the section entitled ”GNU Free Documentation License”.

Trademark Credits

Most of the software-, hardware- and product names used in this document are also trademarks

or registered trademarks of their respective owners.

Donations

Companies using CYBOP ideas, CYBOL or CYBOI on a grand scale are asked to notify the author

<christian.heller@tuxtax.de> and to consider donating some of their sales revenues, which will

be used exclusively for the CYBOP and Res Medicinae free software projects.

Made in Germany, Europe, Planet Earth

To all Coders who stick to The Hacker Manifesto

and devote their Playful Cleverness with great Enthusiasm

to the Free Software Code Base of the Open Source Community

Contents

Preface xi

1 Introduction 1

1.1 Theory . 1

1.2 Analogy . 2

2 Definition 3

2.1 Syntax . 3

2.2 Vocabulary . 4

2.2.1 Document Type Definition . 4

2.2.2 XML Schema Definition . 6

2.2.3 Extended Backus Naur Form . 6

2.3 Semantics . 9

2.3.1 Attributes . 9

2.3.2 Tags . 10

2.3.3 Tag-Attribute Swapping . 11

3 State Models 13

3.1 User Interface . 13

3.1.1 Textual User Interface . 13

3.1.2 Graphical User Interface . 19

3.1.3 Web User Interface . 24

4 Logic Models 29

4.1 Bit Manipulation . 29

4.1.1 Shift . 29

viii Contents

4.1.2 Rotate . 30

4.1.3 Set Bit . 32

4.1.4 Reset Bit . 33

4.1.5 Get Bit . 34

4.2 Boolean Logic . 35

4.2.1 NOT . 35

4.2.2 NEG . 36

4.2.3 AND . 37

4.2.4 OR . 38

4.2.5 XOR . 39

4.3 Program Flow . 40

4.3.1 Branch . 40

4.3.2 Loop . 42

4.3.3 Count . 42

4.3.4 Get . 44

4.4 Comparison . 45

4.4.1 Compare . 45

4.5 Arithmetic . 47

4.5.1 Add . 47

4.5.2 Subtract . 48

4.5.3 Multiply . 50

4.5.4 Divide . 51

4.6 Memory Management . 52

4.6.1 Create . 52

4.6.2 Destroy . 54

4.6.3 Copy . 54

4.6.4 Move . 55

4.7 Lifecycle Management . 56

4.7.1 Startup . 56

4.7.2 Shutdown . 58

4.7.3 Exit . 58

4.8 Communication . 59

4.8.1 Send . 59

4.8.2 Receive . 62

4.8.3 Interrupt . 65

Contents ix

4.9 Shell Commands . 65

4.9.1 Archive File . 65

4.9.2 Copy File . 67

4.9.3 Execute File . 68

4.9.4 List File . 68

5 Examples 71

5.1 State Examples . 71

5.1.1 Model-Part Relation . 71

5.1.2 Meta Properties . 72

5.1.3 External Resources . 73

5.1.4 Serialised Model . 73

5.1.5 Meta Constraints . 74

5.2 Logic Examples . 75

5.2.1 Operation Call . 75

5.2.2 Algorithm Division . 76

5.2.3 Simple Assignment . 76

5.2.4 Loop as Operation . 77

5.2.5 Conditional Execution . 78

5.3 Special Examples . 80

5.3.1 Synchronous Execution . 80

5.3.2 Presentation and Content . 82

5.3.3 Hello World . 84

5.4 Inheritance as Property . 85

5.5 Container Mapping . 86

5.6 Hidden Patterns . 87

6 Diagrams 89

7 Appendices 93

7.1 Abbreviations . 93

7.2 References . 95

7.3 Figures . 97

7.4 Tables . 99

7.5 History . 101

7.6 Licences . 103

x Contents

7.6.1 GNU General Public License . 103

7.6.2 GNU Free Documentation License . 111

7.7 Index . 121

Preface

Prologue

After having had completed and published my book on the theory of Cybernetics Oriented

Programming (CYBOP) [7], the next logical step was to closer inspect and define the features

of the Cybernetics Oriented Language (CYBOL), in other words: to write a specification.

This book tries to achieve this by:

1. explaining the CYBOL syntax, vocabulary and semantics

2. listing all currently interpretable CYBOL keywords

3. giving small CYBOL code examples

CYBOL is a growing language undergoing steady development. Hence, this book will not

be the last version of the CYBOL specification. Also, it is not and doesn’t claim to be free

of mistakes. So, if you find errors of whatever kind or have any helpful ideas or constructive

critics [12], then please contribute them to <christian.heller@tuxtax.de> or to the CYBOP

developers mailing list <cybop-developers@lists.berlios.de>!

I am currently thinking about writing a third book dealing with the internal architecture of

the Cybernetics Oriented Interpreter (CYBOI). However, this is an issue for the future.

Stylistic Means and Notation

The language of choice in this document is British English, more precisely known as Com-

monwealth English. Exceptions are citations or proper names like Unified Modeling Lan-

xii Preface

guage, stemming from American English sources. (In Oxford English, Modelling would be

written with double letter l).

Correctly, masculine and feminine forms are used in a work. When describing a person’s

address, for example, one would write: his or her address. In order to improve readability,

and exclusively because of this reason, only masculine forms are used in this work.

Knowledge templates/ models or pieces thereof, as well as CYBOL keywords are displayed

in Typewriter Typeface. Emphasised words are italicised.

Footnotes are not used on purpose. In my opinion, they only interrupt the flow-of-reading.

Remarks are placed in context instead, sometimes enclosed in parentheses.

The Appendices (chapter 7) contain used abbreviations, references to literature and the

usual lists of figures and tables, as well as the document’s history and licences in full text.

A glossary was omitted since this document does not want to be a lexicon. All terms are

explained at their first appearance in the text. Caution! The page numbers behind an index

entry at the end of this document refer to the Beginning of the section in which the entry

appeared.

Kostrzyn Wielkopolska, Poland

July 2007 Christian Heller <christian.heller@tuxtax.de>

1 Introduction

The Cybernetics Oriented Language (CYBOL) is an interpretable knowledge modelling- and

programming language. It is very flexible, has a simple syntax and is easy to learn. Hence,

not only classical software designers- and developers, but also analysts and domain experts

may have an interest in CYBOL.

Its simplicity is based on the fact that just one major concept needs to be understood: that

of Hierarchy. Well, in fact CYBOL applies it in form of a Double Hierarchy, but is this not

very difficult to grasp, as the code examples later in this document will show.

1.1 Theory

The theory behind CYBOL is called Cybernetics Oriented Programming (CYBOP). It de-

scribes the general concepts, software architecture and development principles that justify

the existence of CYBOL. Besides CYBOL as language, CYBOP suggests the Cybernetics

Oriented Interpreter (CYBOI).

Considering an overall computer system architecture, CYBOI as low-level software system

is situated between the application knowledge existing in form of CYBOL templates and

the Hardware controlled by an Operating System (OS), as is shown in figure 1.1. CYBOI

as active system process interprets the passive application knowledge provided in form of

CYBOL files.

Design-time knowledge resides in CYBOL Knowledge Templates (files). While being in-

stantiated, it gets transferred into runtime Knowledge Models that reside in a computer’s

Random Access Memory (RAM).

2 1 Introduction

 knowledge

 control software

 hardware

 cybol

 cyboi

 operating system

 computer

Figure 1.1: CYBOL Interpretation

1.2 Analogy

There are analogies to other systems run by language interpretation. Table 1.1 shows that

between the Java- and CYBOP world. Both are based on a programming theory, have a

language and interpreter, the latter sometimes being called a Virtual Machine (VM).

Criterion Java World CYBOP World

Theory OOP in Java CYBOP

Language Java CYBOL

Interpreter Java VM CYBOI

Table 1.1: Analogy between the Java- and CYBOP World

CYBOI provides low-level, platform-dependent system functionality, close to the OS, to-

gether with a unified knowledge schema which allows CYBOL applications to be truly

portable, well extensible and easier to program, because developers need to concentrate

on domain knowledge only. Since CYBOI may interpret CYBOL sources live at system

runtime, without the need for previous compilation (as in Java), changes to CYBOL sources

can get into effect right away, without having to restart the system.

2 Definition

This chapter defines the Syntax, Vocabulary and Semantics of the CYBOL language.

As already mentioned in chapter 1, CYBOL is based upon two kinds of hierarchies. One of

them is representing Whole-Part relations (such as a graphical window consisting of a menu

bar) and the other the Meta Data which a whole keeps about its parts (such as the size or

colour of the menu bar). More details and the philosophical background are described in

[7]. The syntax and semantics of CYBOL as new language must be rich enough to express

abstract knowledge models using this kind of double hierarchy.

2.1 Syntax

CYBOL’s syntax (grammar with rules for combining terms and symbols) is based on the

well-known Extensible Markup Language (XML) [17]. It has a clear text representation, is

flexible, extensible and easy to use.

To mention just two of the syntactical elements of XML, Tag and Attribute are considered

here shortly. Tags are special, arbitrary keywords that have to be defined by the system

working with an XML document. Attributes keep additional information about the contents

enclosed by two tags. Two examples:

<tag attribute="value">

contents

</tag>

<tag attribute1="value" attribute2="content"/>

4 2 Definition

A CYBOL knowledge template (XML document) carries a name and can thus represent

a Discrete Item. Being a Compound, the template consists of parts – and, it can link to

other templates (files) treated as its parts. That way, a whole hierarchy can be formed. Tag

attributes can keep additional information about the linked parts. Most importantly, the

hierarchical structure is based on tags, which may be used to store meta data about a part.

CYBOL, finally, is XML plus a defined set of tags, attributes and values used to structure

and link documents meaningfully.

2.2 Vocabulary

The Vocabulary is what fills a language with life. It delivers the Terms and Symbols that

are combined after the rules of a syntax.

XML allows to define and exchange the whole vocabulary of a language. It offers two ways

in which a list of legal elements can be defined: The traditional Document Type Definition

(DTD) and the more modern XML Schema Definition (XSD). Besides the vocabulary,

DTD and XSD define the structure of an XML document and allow to typify, constrain and

validate items. In addition to DTD and XSD, the Extended Backus Naur Form (EBNF) of

CYBOL is given following.

2.2.1 Document Type Definition

A DTD represents the type definition of an XML document. It consists of a set of Markup

Tags and their Interpretation [8]. DTDs can be declared inline, within a document, or as

an external reference [15]. Figure 2.1 shows the DTD of the CYBOL language.

Following the pure hierarchical structure of CYBOL, it would actually suffice to use a DTD

as simple as the one shown in figure 2.2. Since the three elements part, property and

constraint (compare figure 2.1) have the same list of required attributes, they could be

summarised under the name part, for example. Because the structure of a CYBOL model is

non-ambiguous, the meaning of its elements can be guessed from their position within the

model.

2.2 Vocabulary 5

<!ELEMENT model (part*)>

<!ELEMENT part (property*)>

<!ELEMENT property (constraint*)>

<!ELEMENT constraint EMPTY>

<!ATTLIST part

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

<!ATTLIST property

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

<!ATTLIST constraint

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

Figure 2.1: Recommended CYBOL DTD

<!ELEMENT part (part*)>

<!ATTLIST part

name CDATA #REQUIRED

channel CDATA #REQUIRED

abstraction CDATA #REQUIRED

model CDATA #REQUIRED>

Figure 2.2: Simplified CYBOL DTD

6 2 Definition

For the purpose of expressing knowledge in accordance with the schema suggested by CY-

BOP [13], a CYBOL knowledge template (file) does not need to have a root element. The

file name clearly identifies it. For reasons of XML conformity, however, an extra root el-

ement called model was defined (figure 2.1). And for reasons of better readability and

programmability, the three kinds of embedded elements were given distinct names.

2.2.2 XML Schema Definition

XML Schema is an XML-based alternative to DTD [15], and XSD is its definition language.

Figure 2.4 shows the XSD of the CYBOL language.

<?xml version="1.0"?>

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’ targetNamespace=’http://www.cybop.net’

xmlns=’http://www.cybop.net’ elementFormDefault=’qualified’>

<xs:element name=’part’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’part’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 2.3: Simplified CYBOL XSD

Again, a simplified version of that XSD could be created (figure 2.3). But for reasons

explained before, the recommended XSD is the one shown in figure 2.4.

2.2.3 Extended Backus Naur Form

The EBNF adds regular expression syntax to the Backus Naur Form (BNF) notatation [1],

in order to allow very compact specifications [9]. Figure 2.5 shows the EBNF of the CYBOL

language.

2.2 Vocabulary 7

<?xml version="1.0"?>

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’ targetNamespace=’http://www.cybop.net’

xmlns=’http://www.cybop.net’ elementFormDefault=’qualified’>

<xs:element name=’model’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’part’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=’part’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’property’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

<xs:element name=’property’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’constraint’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

<xs:element name=’constraint’>

<xs:complexType>

<xs:attribute name=’name’ type=’xs:string’ use=’required’/>

<xs:attribute name=’channel’ type=’xs:string’ use=’required’/>

<xs:attribute name=’abstraction’ type=’xs:string’ use=’required’/>

<xs:attribute name=’model’ type=’xs:string’ use=’required’/>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 2.4: Recommended CYBOL XSD

8 2 Definition

CYBOL = ’<model>’

{part}

’</model>’;

part = ’<part ’ attributes ’\>’ |

’<part ’ attributes ’>’

{property}

’</part>’;

property = ’<property ’ attributes ’\>’ |

’<property ’ attributes ’>’

{constraint}

’</property>’;

constraint = ’<constraint ’ attributes ’\>’;

attributes = name_attribute channel_attribute abstraction_attribute model_attribute

name_attribute = ’name="’ name ’"’;

channel_attribute = ’channel="’ channel ’"’;

abstraction_attribute = ’abstraction="’ abstraction ’"’;

model_attribute = ’model="’ model ’"’;

name = description_sign;

channel = description_sign;

abstraction = description_sign;

model = value_sign;

description_sign = { (letter | number) };

value_sign = { (letter | number | other_sign) };

letter = small_letter | big_letter;

small_letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ |

’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ |

’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ |

’v’ | ’w’ | ’x’ | ’y’ | ’z’;

big_letter = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ |

’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ |

’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ |

’V’ | ’W’ | ’X’ | ’Y’ | ’Z’;

other_sign = ’,’ | ’.’ | ’/’, ’+’, ’-’, ’*’;

number = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ |

’5’ | ’6’ | ’7’ | ’8’ | ’9’;

Figure 2.5: CYBOL in EBNF

2.3 Semantics 9

2.3 Semantics

The meaning expressed by terms and sentences is their Semantics [2].

CYBOL files can be used to model State Knowledge (like a graphical window or a person’s

address) and Logic Knowledge (like an operation or algorithm or workflow) [7]. In both

cases, the same syntax (document structure) with identical vocabulary (XML tags and

-attributes) is applied. It is the attribute Values that make a difference in meaning.

The double hierarchy mentioned before is realised in CYBOL knowledge templates by using

XML Attributes for representing the whole-part hierarchy, and XML Tags for representing

the additional meta data that a whole model keeps about its part models.

2.3.1 Attributes

Normally, an XML Attribute keeps meta information about the contents of an XML Tag.

In CYBOL, however, three attributes keep meta information about a fourth attribute. The

attributes, altogether, are:

- name

- channel

- abstraction

- model

The attribute of greatest interest is model. It contains a model either directly, or a path

to one. The channel attribute indicates whether the model attribute’s value is to be read

from:

- inline

- file

The abstraction attribute specifies how to interpret the model pointed to by the model

attribute’s value. A model may be given in formats like for example:

- compound (a state- or logic compound model encoded in CYBOL format)

- operation (a primitive logic model)

- character

10 2 Definition

- double

- integer

- boolean

The name attribute, finally, provides the referenced model with an identifier that has to be

unique within the Whole model the Part model belongs to.

While the interpretation of the model attribute’s value depends on the channel- and abstrac-

tion attributes, the other three attributes (name, channel, abstraction) themselves always

get interpreted as string of characters.

2.3.2 Tags

There are many kinds of meta data besides the above-mentioned attributes, that may be

known about a model. These are given as special XML tags called property and constraint.

As defined in section 2.2, a CYBOL knowledge template may use four kinds of XML tags:

- model

- part

- property

- constraint

The model tag appears just once. It is the root node which makes a CYBOL knowledge

template a valid XML document.

Of actual interest are the part tags. They identify the models that the whole model described

by the CYBOL knowledge template consists of.

A whole model may know a lot more about its part models, than is given by a part model’s

XML attributes. A spatial state model may know about the position and size of its parts,

in space. A temporal model (such as a workflow) may have to know about the position of

its parts in time, in order to be able to execute them in the correct order. Further, the

temporal model needs to know about the input/output (i/o) state models which are to be

manipulated by the corresponding logic operation (part model). The number of parts within

a whole (compound) model may be limited. And so on. These additional information are

provided by property tags whose number is conceptually unlimited.

2.3 Semantics 11

Not only parts need additional meta data; properties may need such data, too. The position

or size as properties of a part may have to be constrained to certain values, such as a

minimum or maximum. The values of the colour property of a part model may have to

be chosen out of a pre-defined set called choice. Data of that kind are stated in constraint

tags.

2.3.3 Tag-Attribute Swapping

CYBOL swaps the meaning attributes and tags traditionally have in XML documents, where

tags represent elements that may be nested infinitely and attributes hold additional (meta)

data about a tag. Following an example of how CYBOL might have looked that way:

<model>

<part>

<name="title"/>

<channel="inline"/>

<abstraction="character"/>

<model="Res Medicinae"/>

</part>

<part layout="compass" position="north">

<name="menu_bar"/>

<channel="file"/>

<abstraction="cybol"/>

<model="gui/menu_bar.cybol"/>

</part>

</model>

The current final specification of CYBOL, on the contrary, uses attributes to define a nested

element (part) and tags to give properties (meta information) about such a nested element,

in the following way:

<model>

<part name="title" channel="inline" abstraction="character" model="Res Medicinae"/>

<part name="menu_bar" channel="file" abstraction="cybol" model="gui/menu_bar.cybol">

<property name="layout" channel="inline" abstraction="character" model="compass"/>

<property name="position" channel="inline" abstraction="character" model="north"/>

</part>

</model>

This is because:

12 2 Definition

1. the number of attributes specifying a part in CYBOL is fixed, whereas the number

of tags specifying a property of a part is not, and the number of XML tags is easier

extensible than that of attributes;

2. that way it is also possible to specify a part without any properties in just one CYBOL

code line, while otherwise four tags would always have to be given;

3. not only a part may be nested (consist of smaller parts), but also a property may

be (for example a position consisting of three coordinates given as parts), which

necessitates the four standard attributes to be given for properties and constraints

as well.

3 State Models

3.1 User Interface

A User Interface (UI) provides functionality by which a user can communicate with a

software system.

3.1.1 Textual User Interface

Textual User Interface (TUI) is a synonym for character-based UI. Historically, the TUI

(besides the simple command line) was the first kind of UI for computers. It mostly offers a

menu with a list of possible choices that can be activated via the pressing of a special button

on the keyboard. Figure 3.1 illustrates a typical, menu-based TUI.

Example

<part name="exit_menu_item" channel="inline" abstraction="character" model="Exit">

<property name="position" channel="inline" abstraction="integer" model="5,10,0"/>

<property name="size" channel="inline" abstraction="integer" model="60,1,1"/>

<property name="background" channel="inline" abstraction="character" model="blue"/>

<property name="foreground" channel="inline" abstraction="character" model="white"/>

<property name="bold" channel="inline" abstraction="boolean" model="true"/>

<property name="enter" channel="inline" abstraction="knowledge" model=".app.logic.enter"/>

<property name="previous" channel="inline" abstraction="knowledge" model=".app.tui.about_menu_item"/>

<property name="next" channel="inline" abstraction="knowledge" model=".app.tui.start_menu_item"/>

<property name="arrow_up" channel="inline" abstraction="knowledge" model=".app.logic.arrow_up"/>

<property name="arrow_down" channel="inline" abstraction="knowledge" model=".app.logic.arrow_down"/>

</part>

14 3 State Models

Figure 3.1: Textual User Interface

Position Property

This property specifies the TUI element’s origin.

required

name=’position’

abstraction=’integer’

model=x, y, z coordinates

Size Property

This property specifies the TUI element’s extension.

required

name=’size’

abstraction=’integer’

model=x, y, z extensions

3.1 User Interface 15

Background Property

This property specifies the background colour of the TUI.

required

name=’background’

abstraction=’character’

model=’black’ ’red’ ’green’ ’yellow’ ’blue’ ’magenta’ ’cobalt’ ’white’

Foreground Property

This property specifies the foreground colour of the TUI.

required

name=’foreground’

abstraction=’character’

model=’black’ ’red’ ’green’ ’yellow’ ’blue’ ’magenta’ ’cobalt’ ’white’

Border Property

This property specifies the kind of border of the TUI.

optional

name=’border’

abstraction=’character’

model=’line’ ’round line’ ’double line’

Hidden Property

This property specifies whether or not to hide the TUI element.

optional

name=’hidden’

abstraction=’boolean’

model=’true’ ’false’

16 3 State Models

Inverse Property

This property specifies whether or not to display the TUI element in inverse colours.

optional

name=’inverse’

abstraction=’boolean’

model=’true’ ’false’

Blink Property

This property specifies whether or not the TUI element should blink.

optional

name=’blink’

abstraction=’boolean’

model=’true’ ’false’

Underline Property

This property specifies whether or not to underline the TUI element’s text.

optional

name=’underline’

abstraction=’boolean’

model=’true’ ’false’

Bold Property

This property specifies whether or not to display the TUI element’s text in bold font.

optional

name=’bold’

abstraction=’boolean’

model=’true’ ’false’

3.1 User Interface 17

Focus Property

This property points to the TUI element (knowledge model) having focus. It is important

to find out which TUI element a key press event relates to. The focus of a number of part

elements should always be held by their corresponding whole (compound) element.

optional, only if TUI element should be able to react to button press events

name=’focus’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Previous Property

This property points to the previous TUI element (knowledge model) owning focus.

optional, only if TUI element should have a predecessor that may own the focus

name=’previous’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Next Property

This property points to the next TUI element (knowledge model) receiving focus.

optional, only if TUI element should have a successor that may own the focus

name=’next’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Enter Property

This property specifies the logic knowledge model to be executed if the Enter button is

pressed while the TUI element has focus.

optional, only if TUI element should react to button press event; a prerequisition is that the

TUI element’s focus property value is true

18 3 State Models

name=’enter’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Escape Property

This property specifies the logic knowledge model to be executed if the Esc button is pressed

while the TUI element has focus.

optional, only if TUI element should react to button press event; a prerequisition is that the

TUI element’s focus property value is true

name=’escape’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Arrow Up Property

This property specifies the logic knowledge model to be executed if the arrow-up button is

pressed while the TUI element has focus.

optional, only if TUI element should react to button press event; a prerequisition is that the

TUI element’s focus property value is true

name=’arrow up’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Arrow Down Property

This property specifies the logic knowledge model to be executed if the arrow-down button

is pressed while the TUI element has focus.

optional, only if TUI element should react to button press event; a prerequisition is that the

TUI element’s focus property value is true

name=’arrow down’

abstraction=’knowledge’ ’encapsulated’

3.1 User Interface 19

model=logic knowledge model

Arrow Left Property

This property specifies the logic knowledge model to be executed if the arrow-left button is

pressed while the TUI element has focus.

optional, only if TUI element should react to button press event; a prerequisition is that the

TUI element’s focus property value is true

name=’arrow left’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Arrow Right Property

This property specifies the logic knowledge model to be executed if the arrow-right button

is pressed while the TUI element has focus.

optional, only if TUI element should react to button press event; a prerequisition is that the

TUI element’s focus property value is true

name=’arrow right’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

3.1.2 Graphical User Interface

A Graphical User Interface (GUI) is mostly based on so-called graphical Windows which

may overlap, or be ordered side-by-side on a screen. Figure 3.2 illustrates a typical GUI.

Example

<part name="menu_bar" channel="file" abstraction="compound" model="gui/menu_bar.cybol">

<property name="shape" channel="inline" abstraction="character" model="rectangle"/>

<property name="layout" channel="inline" abstraction="character" model="compass"/>

<property name="cell" channel="inline" abstraction="character" model="north"/>

<property name="size" channel="inline" abstraction="integer" model="600,40,1"/>

20 3 State Models

Figure 3.2: Graphical User Interface

<property name="foreground" channel="inline" abstraction="rgb" model="0,0,0"/>

<property name="right_press" channel="inline" abstraction="knowledge" model=".app.logic.action"/>

</part>

Shape Property

This property specifies the geometrical shape of the GUI.

required

name=’shape’

abstraction=’character’

model=’rectangle’ ’circle’ ’polygon’

Layout Property

This property specifies the kind of layout of the GUI.

required

3.1 User Interface 21

name=’layout’

abstraction=’character’

model=’root’ ’coordinates’ ’compass’

Cell Property

This property specifies the cell ordering, if compass layout is used.

optional, only if layout property is compass

name=’cell’

abstraction=’character’

model=’north’ ’south’ ’west’ ’east’ ’centre’

Position Property

This property specifies the GUI element’s origin.

optional, only if layout property is root or coordinates

name=’position’

abstraction=’integer’

model=x, y, z coordinates

Size Property

This property specifies the GUI element’s extension.

required

name=’size’

abstraction=’integer’

model=x, y, z extensions

Background Property

This property specifies the background colour of the GUI.

optional

22 3 State Models

name=’background’

abstraction=’character’

model=’black’ ’red’ ’green’ ’yellow’ ’blue’ ’magenta’ ’cobalt’ ’white’

Foreground Property

This property specifies the foreground colour of the GUI.

optional

name=’foreground’

abstraction=’character’

model=’black’ ’red’ ’green’ ’yellow’ ’blue’ ’magenta’ ’cobalt’ ’white’

Title Property

This property specifies the GUI element’s (window’s) title.

optional, only if layout property is root

name=’title’

abstraction=’character’

model=window title

Icon Property

This property specifies the GUI element’s (window’s) icon.

optional, only if layout property is root

name=’icon’

abstraction=’bmp’ ’jpeg’ ’png’ ’gif’ etc.

model=graphic file

Expose Property

This property specifies the logic knowledge model to be executed if the GUI element is

exposed, for example shown again after having been hidden before.

3.1 User Interface 23

optional, only if GUI element should react to expose event

name=’expose’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Mouse Over Property

This property specifies the logic knowledge model to be executed if the mouse is moved over

the GUI element.

optional, only if GUI element should react to mouse event

name=’mouse over’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Mouse Wheel Property

This property specifies the logic knowledge model to be executed if the mouse wheel is

scrolled while the mouse pointer is over the GUI element.

optional, only if GUI element should react to mouse event

name=’mouse wheel’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Left Press Property

This property specifies the logic knowledge model to be executed if the left mouse button is

pressed.

optional, only if GUI element should react to mouse event

name=’left press’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

24 3 State Models

Left Release Property

This property specifies the logic knowledge model to be executed if the left mouse button is

released.

optional, only if GUI element should react to mouse event

name=’left release’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

Left Click Property

This property specifies the logic knowledge model to be executed if the left mouse button is

clicked. A mouse click is the combination of a mouse press- and release event.

optional, only if GUI element should react to mouse event

name=’left click’

abstraction=’knowledge’ ’encapsulated’

model=logic knowledge model

3.1.3 Web User Interface

A Web User Interface (WUI) is what is commonly also known as Hypertext Markup Lan-

guage (HTML) file. HTML files get interpreted by a Web Browser which renders the

graphical and textual information to display these as HTML page. Figure 3.3 shows an

example WUI.

Example

<part name="address_table" channel="file" abstraction="compound" model="wui/table.cybol">

<property name="tag" channel="inline" abstraction="character" model="table"/>

<property name="width" channel="inline" abstraction="character" model="100%"/>

<property name="cellspacing" channel="inline" abstraction="integer" model="5"/>

<property name="cellpadding" channel="inline" abstraction="integer" model="2"/>

<property name="border" channel="inline" abstraction="boolean" model="false"/>

</part>

3.1 User Interface 25

Figure 3.3: Web User Interface

Tag Property

This property specifies the HTML tag to associate with the knowledge model.

required

name=’tag’

abstraction=’character’

model=’html’ ’head’ ’meta’ ’body’ ’table’ ’tr’ etc.

Xmlns Property

This property specifies the XML namespace for the HTML page to be generated from the

WUI.

optional, only for html tag

name=’xmlns’

abstraction=’character’

model=’http://www.w3.org/1999/xhtml’

26 3 State Models

HTTP-Equiv Property

This property specifies the content type for the HTML page to be generated from the WUI.

optional, only for meta tag

name=’http-equiv’

abstraction=’character’

model=’content-type’

Name Property

This property specifies the name of a meta data entry for the HTML page to be generated

from the WUI.

optional, only for meta tag

name=’name’

abstraction=’character’

model=’author’

Content Property

This property specifies the content of a meta data entry for the HTML page to be generated

from the WUI.

optional, only for meta tag

name=’content’

abstraction=’character’

model=’Generated by CYBOI’

Align Property

This property specifies the alignment of the HTML heading.

optional, only for h1..6 tag

3.1 User Interface 27

name=’align’

abstraction=’character’

model=’left’ ’right’ ’center’

Width Property

This property specifies the width of the HTML table.

optional, only for table tag

name=’width’

abstraction=’character’

model=table width

Cellspacing Property

This property specifies the spacing between the cells of the HTML table.

optional, only for table tag

name=’cellspacing’

abstraction=’character’

model=space between cells in pixels

Cellpadding Property

This property specifies the space between an HTML table cell’s border and its content.

optional, only for table tag

name=’cellpadding’

abstraction=’character’

model=space between cell border and content

Border Property

This property specifies the width of the HTML table’s border.

optional, only for table tag

28 3 State Models

name=’border’

abstraction=’character’

model=table border width

HRef Property

This property specifies the reference (link) to be invoked when activating the HTML element.

optional, only for a tag

name=’href’

abstraction=’character’

model=an HTML reference

4 Logic Models

4.1 Bit Manipulation

4.1.1 Shift

This operation shifts the bits within the number by the given positions.

Example

<part name="shift_bits" channel="inline" abstraction="operation" model="shift">

<property name="number" channel="inline" abstraction="integer" model="8"/>

<property name="direction" channel="inline" abstraction="character" model="right"/>

<property name="position" channel="inline" abstraction="integer" model="2"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Number Property

This property specifies the number whose bits are to be shifted.

required

name=’number’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=the actual number (or knowledge model)

30 4 Logic Models

Direction Property

The direction in which to shift.

required

name=’direction’

abstraction=’character’

model=’left’ ’right’

Position Property

The number of positions by which the bits of the given number are to be shifted.

required

name=’position’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=number of positions to shift by

Result Property

This is the result knowledge model in which to store the number whose bits were shifted.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=result knowledge model

4.1.2 Rotate

This operation rotates the bits within the number by the given positions.

Example

<part name="rotate_bits" channel="inline" abstraction="operation" model="rotate">

<property name="number" channel="inline" abstraction="knowledge" model=".app.number"/>

<property name="direction" channel="inline" abstraction="character" model="left"/>

4.1 Bit Manipulation 31

<property name="position" channel="inline" abstraction="integer" model="1"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Number Property

This property specifies the number whose bits are to be rotated.

required

name=’number’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=the actual number (or knowledge model)

Direction Property

The direction in which to rotate.

required

name=’direction’

abstraction=’character’

model=’left’ ’right’

Position Property

The number of positions by which the bits of the given number are to be rotated.

required

name=’position’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=number of positions to rotate by

Result Property

This is the result knowledge model in which to store the number whose bits were rotated.

32 4 Logic Models

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=result knowledge model

4.1.3 Set Bit

This operation sets the bit at the given position within the given number. Set means setting

the bit to true.

Example

<part name="set_some_bit" channel="inline" abstraction="operation" model="set_bit">

<property name="number" channel="inline" abstraction="knowledge" model=".app.number"/>

<property name="position" channel="inline" abstraction="knowledge" model=".app.pos"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Number Property

This property specifies the number of which one bit is to be set.

required

name=’number’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=the actual number (or knowledge model)

Position Property

The position of the bit whose value is to be set (set to true).

required

name=’position’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=position of the bit

4.1 Bit Manipulation 33

Result Property

This is the result knowledge model in which to store the number of which one bit was set

(to true).

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=result knowledge model

4.1.4 Reset Bit

This operation resets the bit at the given position within the given number. Reset means

setting the bit to false.

Example

<part name="reset_some_bit" channel="inline" abstraction="operation" model="reset_bit">

<property name="number" channel="inline" abstraction="integer" model="80"/>

<property name="position" channel="inline" abstraction="integer" model="2"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Number Property

This property specifies the number of which one bit is to be reset.

required

name=’number’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=the actual number (or knowledge model)

Position Property

The position of the bit whose value is to be reset (set to false).

34 4 Logic Models

required

name=’position’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=position of the bit

Result Property

This is the result knowledge model in which to store the number of which one bit was reset

(to false).

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=result knowledge model

4.1.5 Get Bit

This operation retrieves the bit at the given position, within the given number.

Example

<part name="get_some_bit" channel="inline" abstraction="operation" model="get_bit">

<property name="number" channel="inline" abstraction="integer" model="127"/>

<property name="position" channel="inline" abstraction="integer" model="3"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Number Property

This property specifies the number of which one bit is to be retrieved.

required

name=’number’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=the actual number (or knowledge model)

4.2 Boolean Logic 35

Position Property

The position of the bit whose value is to be retrieved.

required

name=’position’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=position of the bit

Result Property

This is the result knowledge model in which to store the value of the bit that was retrieved

from the given number. It may be either true or false.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=result knowledge model

4.2 Boolean Logic

4.2.1 NOT

This operation applies the logic NOT operator to the given boolean operand.

Example

<part name="apply_not" channel="inline" abstraction="operation" model="not">

<property name="operand" channel="inline" abstraction="boolean" model="true"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

36 4 Logic Models

Operand Property

This is the operand of the boolean operation.

required

name=’operand’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Result Property

This is the result of the boolean operation. It may be either true or false.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.2.2 NEG

This operation applies the logic NEG operator to the given boolean operand.

Example

<part name="apply_neg" channel="inline" abstraction="operation" model="neg">

<property name="operand" channel="inline" abstraction="knowledge" model=".app.value"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Operand Property

This is the operand of the boolean operation.

required

4.2 Boolean Logic 37

name=’operand’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Result Property

This is the result of the boolean operation. It may be either true or false.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.2.3 AND

This operation applies the logic AND operator to the given boolean operands.

Example

<part name="apply_and" channel="inline" abstraction="operation" model="and">

<property name="operand_1" channel="inline" abstraction="knowledge" model=".app.value"/>

<property name="operand_2" channel="inline" abstraction="boolean" model="false"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Operand 1 Property

This is the first operand of the boolean operation.

required

name=’operand 1’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

38 4 Logic Models

Operand 2 Property

This is the second operand of the boolean operation.

required

name=’operand 2’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Result Property

This is the result of the boolean operation. It may be either true or false.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.2.4 OR

This operation applies the logic OR operator to the given boolean operands.

Example

<part name="apply_or" channel="inline" abstraction="operation" model="or">

<property name="operand_1" channel="inline" abstraction="boolean" model="true"/>

<property name="operand_2" channel="inline" abstraction="boolean" model="true"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Operand 1 Property

This is the first operand of the boolean operation.

required

4.2 Boolean Logic 39

name=’operand 1’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Operand 2 Property

This is the second operand of the boolean operation.

required

name=’operand 2’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Result Property

This is the result of the boolean operation. It may be either true or false.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.2.5 XOR

This operation applies the logic XOR operator to the given boolean operands.

Example

<part name="apply_xor" channel="inline" abstraction="operation" model="xor">

<property name="operand_1" channel="inline" abstraction="boolean" model="true"/>

<property name="operand_2" channel="inline" abstraction="boolean" model="false"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

40 4 Logic Models

Operand 1 Property

This is the first operand of the boolean operation.

required

name=’operand 1’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Operand 2 Property

This is the second operand of the boolean operation.

required

name=’operand 2’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=boolean value or knowledge model

Result Property

This is the result of the boolean operation. It may be either true or false.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.3 Program Flow

4.3.1 Branch

This operation branches the program flow, depending on the given criterion flag. If the flag

is true, another logic knowledge model may be executed than if the flag is false.

4.3 Program Flow 41

Example

<part name="branch" channel="inline" abstraction="operation" model="branch">

<property name="criterion" channel="inline" abstraction="knowledge" model=".app.crit"/>

<property name="true" channel="inline" abstraction="knowledge" model=".app.add_address"/>

<property name="false" channel="inline" abstraction="knowledge" model=".app.del_address"/>

</part>

Criterion Property

This is the flag specifying which of the two models to execute.

required

name=’criterion’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=’true’ ’false’ knowledge model pointing to flag

True Property

This is the logic knowledge model to be executed if the condition is true.

required

name=’true’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model path if true

False Property

This is the logic knowledge model to be executed if the condition is false.

required

name=’false’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model path if false

42 4 Logic Models

4.3.2 Loop

This operation starts an endless loop that runs until the given break flag is set.

Example

<part name="loop_addresses" channel="inline" abstraction="operation" model="loop">

<property name="model" channel="inline" abstraction="knowledge" model=".app.process"/>

<property name="break" channel="inline" abstraction="knowledge" model=".app.break_flag"/>

</part>

Model Property

This is the knowledge model to be executed repeatedly by the loop.

required

name=’model’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

Break Property

This is the break flag. Once set, the loop will be left (exited). It may be either true or false.

required

name=’break’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.3.3 Count

This operation counts those parts of the given whole (compound), that match the given

filter criteria.

4.3 Program Flow 43

Example

<part name="count_addresses" channel="inline" abstraction="operation" model="count">

<property name="compound" channel="inline" abstraction="encapsulated" model=".app.name"/>

<property name="selection" channel="inline" abstraction="character" model="prefix"/>

<property name="filter" channel="inline" abstraction="character" model="address"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Compound Property

The compound whose parts are to be counted.

required

name=’compound’

abstraction=’knowledge’ ’encapsulated’

model=compound knowledge model

Selection Property

This property selects the kind of filter to be applied for counting the compound’s parts.

required

name=’selection’

abstraction=’character’

model=’full’ ’prefix’ ’suffix’ ’part’

Filter Property

The filter to compare the compound parts’ names with. Only those parts will be counted

whose name (full, prefix, suffix, part) matches the filter string.

required

name=’filter’

abstraction=’character’

model=filter string

44 4 Logic Models

Result Property

The knowledge model in which to store the result.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=knowledge model

4.3.4 Get

Example

<part name="get_fifth_address" channel="inline" abstraction="operation" model="get">

<property name="compound" channel="inline" abstraction="knowledge" model=".app.adr"/>

<property name="index" channel="inline" abstraction="integer" model="4"/>

<property name="description" channel="inline" abstraction="character" model="name"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

Compound Property

This is the compound whose element is to be retrieved.

required

name=’compound’

abstraction=’knowledge’ ’encapsulated’

model=’integer’ ’character’

Index Property

This is the index of the element to be retrieved, within the compound.

required

4.4 Comparison 45

name=’index’

abstraction=’integer’

model=position of element

Description Property

This property determines which data of the compound’s part to retrieve.

required

name=’description’

abstraction=’character’

model=’name’ ’abstraction’

Result Property

This is the result knowledge model in which to store the retrieved element.

required

name=’result’

abstraction=’knowledge’ ’encapsulated’

model=result knowledge model

4.4 Comparison

4.4.1 Compare

This operation compares two given operands.

Example

<part name="compare_loop_index" channel="inline" abstraction="operation" model="compare">

<property name="comparison" channel="inline" abstraction="character" model="greater_or_equal"/>

<property name="left_side" channel="inline" abstraction="knowledge" model=".app.tmp.loop_index"/>

<property name="right_side" channel="inline" abstraction="integer" model="5"/>

<property name="result" channel="inline" abstraction="knowledge" model=".app.tmp.break_flag"/>

46 4 Logic Models

</part>

Comparison Property

This is the kind of comparison to be applied.

required

name=’comparison’

abstraction=’character’

model=’equal’ ’smaller’ ’greater’ ’smaller or equal’ ’greater or equal’

Left Side Property

This is the left side value of the comparison.

required

name=’left side’

abstraction=’boolean’ ’integer’ ’float’ ’character’ ’knowledge’ ’encapsulated’

model=value or knowledge model

Right Side Property

This is the right side value of the comparison.

required

name=’right side’

abstraction=’boolean’ ’integer’ ’float’ ’character’ ’knowledge’ ’encapsulated’

model=value or knowledge model

Result Property

This is the knowledge model in which the comparison result is stored.

required

4.5 Arithmetic 47

name=’result’

abstraction=’boolean’ ’knowledge’ ’encapsulated’

model=result knowledge model

Selection Property

This property selects which part of two string values shall be compared.

optional, only if comparing values of abstraction ”character”

name=’selection’

abstraction=’character’

model=’full’ ’prefix’ ’suffix’ ’part’

4.5 Arithmetic

4.5.1 Add

This operation is a simple addition of two numbers or strings.

Example

<part name="add_numbers" channel="inline" abstraction="operation" model="add">

<property name="summand_1" channel="inline" abstraction="knowledge" model=".app.summand_1"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model=".app.summand_2"/>

<property name="sum" channel="inline" abstraction="knowledge" model=".app.sum"/>

</part>

Abstraction Property

This property specifies the abstraction of the properties summand 1, summand 2 and sum.

In other words, the models of these properties have to have the same abstraction.

required

48 4 Logic Models

name=’abstraction’

abstraction=’character’

model=’integer’ ’character’

Summand 1 Property

The first summand for the addition.

required

name=’summand 1’

abstraction=’integer’ ’character’ ’knowledge’ ’encapsulated’

model=number or knowledge model path

Summand 2 Property

The second summand for the addition.

required

name=’summand 2’

abstraction=’integer’ ’character’ ’knowledge’ ’encapsulated’

model=number or knowledge model path

Sum Property

The sum resulting from the addition.

required

name=’sum’

abstraction=’integer’ ’character’ ’knowledge’ ’encapsulated’

model=knowledge model path

4.5.2 Subtract

This operation subtracts one number from another which results in their difference.

4.5 Arithmetic 49

Example

<part name="subtract_numbers" channel="inline" abstraction="operation" model="subtract">

<property name="minuend" channel="inline" abstraction="integer" model="10"/>

<property name="subtrahend" channel="inline" abstraction="integer" model="7"/>

<property name="difference" channel="inline" abstraction="knowledge" model=".app.difference"/>

</part>

Minuend Property

This is the minuend, i.e. the number to be subtracted from.

required

name=’minuend’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=number or knowledge model path

Subtrahend Property

This is the subtrahend, i.e. the number to be subtracted.

required

name=’subtrahend’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=number or knowledge model path

Difference Property

This is the difference between minuend and subtrahend.

required

name=’difference’

abstraction=’integer’ ’knowledge’ ’encapsulated’

model=knowledge model path

50 4 Logic Models

4.5.3 Multiply

This operation multiplies two numbers which results in the product.

Example

<part name="multiply_numbers" channel="inline" abstraction="operation" model="multiply">

<property name="factor_1" channel="inline" abstraction="integer" model="2"/>

<property name="factor_2" channel="inline" abstraction="knowledge" model=".app.factor"/>

<property name="product" channel="inline" abstraction="knowledge" model=".app.product"/>

</part>

Factor 1 Property

This is the first factor of the multiplication.

required

name=’factor 1’

abstraction=’integer’

model=number or knowledge model

Factor 2 Property

This is the second factor of the multiplication.

required

name=’factor 2’

abstraction=’integer’

model=number or knowledge model

Product Property

This is the product as result of the multiplication.

required

4.5 Arithmetic 51

name=’product’

abstraction=’integer’

model=number or knowledge model

4.5.4 Divide

This operation divides one number by another, which results in the quotient. If the dividend

is not a multiple of the divisor, then the operation will return the remainder as additional

property.

Example

<part name="divide_numbers" channel="inline" abstraction="operation" model="divide">

<property name="dividend" channel="inline" abstraction="integer" model="table"/>

<property name="divisor" channel="inline" abstraction="integer" model="divisor"/>

<property name="quotient" channel="inline" abstraction="integer" model="quotient"/>

<property name="remainder" channel="inline" abstraction="integer" model="remainder"/>

</part>

Dividend Property

This is the dividend, i.e. the number to be divided.

required

name=’dividend’

abstraction=’integer’ ’knowledge’ ’encapsulated’ model=number or knowledge model

Divisor Property

This is the divisor, i.e. the number to be divided by.

required

name=’divisor’

abstraction=’integer’ ’knowledge’ ’encapsulated’ model=number or knowledge model

52 4 Logic Models

Quotient Property

This is the quotient, i.e. the number resulting from the division.

required

name=’quotient’

abstraction=’integer’ ’knowledge’ ’encapsulated’ model=number or knowledge model

Remainder Property

This is the remainder, i.e. the difference between dividend and quotient.

required

name=’remainder’

abstraction=’integer’ ’knowledge’ ’encapsulated’ model=number or knowledge model

4.6 Memory Management

4.6.1 Create

This operation creates a new knowledge model in memory.

Example

<part name="create_addresses" channel="inline" abstraction="operation" model="create">

<property name="name" channel="inline" abstraction="character" model="addresses"/>

<property name="abstraction" channel="inline" abstraction="character" model="compound"/>

<property name="element" channel="inline" abstraction="character" model="part"/>

<property name="compound" channel="inline" abstraction="knowledge" model=".app"/>

</part>

Name Property

This is the name of the knowledge model to be created.

4.6 Memory Management 53

required

name=’name’

abstraction=’character’

model=knowledge model name

Abstraction Property

This is the abstraction (type) of the knowledge model to be created.

required

name=’abstraction’

abstraction=’character’

model=’boolean’ ’integer’ ’float’ ’character’ ’compound’

Element Property

This property decides about the kind of element (knowledge model) to be created. A part

element will be added to the model’s part hierarchy; a meta element will be added to the

model’s details hierarchy.

required

name=’element’

abstraction=’character’

model=’part’ ’meta’

Compound Property

This property specifies the compound knowledge model to which to add to the new part/

meta knowledge model.

required

name=’compound’

abstraction=’knowledge’ ’encapsulated’

model=whole knowledge model path

54 4 Logic Models

4.6.2 Destroy

This operation destroys the given knowledge model and releases the memory that was oc-

cupied by it.

Example

<part name="destroy_addresses" channel="inline" abstraction="operation" model="destroy">

<property name="model" channel="inline" abstraction="knowledge" model=".app.addresses"/>

</part>

Model Property

This is the knowledge model to be destroyed.

required

name=’model’

abstraction=’knowledge’ ’encapsulated’

model=’knowledge model’

4.6.3 Copy

This operation copies a value with the given abstraction from the source- to the destination

model.

Example

<part name="copy_title" channel="inline" abstraction="operation" model="copy">

<property name="abstraction" channel="inline" abstraction="character" model="character"/>

<property name="source" channel="inline" abstraction="character" model="My Book"/>

<property name="destination" channel="inline" abstraction="knowledge" model=".app.title"/>

</part>

4.6 Memory Management 55

Abstraction Property

This is the abstraction of the values. CAUTION! It has to be identical for both, source- and

destination value!

required

name=’abstraction’

abstraction=’character’

model=’boolean’ ’integer’ ’character’

Source Property

This is the source value.

required

name=’source’

abstraction=’boolean’ ’integer’ ’character’ ’knowledge’ ’encapsulated’

model=value or knowledge model

Destination Property

This is the destination value.

required

name=’destination’

abstraction=’boolean’ ’integer’ ’character’ ’knowledge’ ’encapsulated’

model=value or knowledge model

4.6.4 Move

This operation moves the part knowledge model to a new whole (compound) knowledge

model.

56 4 Logic Models

Example

<part name="move_addresses" channel="inline" abstraction="operation" model="move">

<property name="part" channel="inline" abstraction="knowledge" model=".app.addresses"/>

<property name="whole" channel="inline" abstraction="knowledge" model=".app.domain"/>

</part>

Part Property

This is the part knowledge model that is to be moved.

required

name=’part’

abstraction=’knowledge’ ’encapsulated’

model=part knowledge model

Whole Property

This is the whole knowledge model to which to add to the part knowledge model.

required

name=’whole’

abstraction=’knowledge’ ’encapsulated’

model=whole knowledge model

4.7 Lifecycle Management

4.7.1 Startup

This operation starts up the given service.

Example

<part name="startup_wui" channel="inline" abstraction="operation" model="startup">

<property name="service" channel="inline" abstraction="character" model="www"/>

4.7 Lifecycle Management 57

<property name="namespace" channel="inline" abstraction="character" model="inet6"/>

<property name="style" channel="inline" abstraction="character" model="stream"/>

<property name="address" channel="inline" abstraction="character" model="any"/>

</part>

Service Property

This is the service to be started up.

required

name=’service’

abstraction=’character’

model=’signal’ ’shell’ ’standard output’ ’gnu linux console’ ’x window system’

’www’ ’cyboi’

Namespace Property

The namespace of the socket.

optional, only if service is www or cyboi

name=’namespace’

abstraction=’character’

model=’local’ ’inet’ ’inet6’ ’ns’ ’iso’ ’ccitt’ ’implink’ ’route’

Style Property

The style of socket communication.

optional, only if service is www or cyboi

name=’style’

abstraction=’character’

model=’stream’ ’datagram’ ’raw’

58 4 Logic Models

Address Property

This is the address of hosts communicating with this system via socket.

optional, only if service is www or cyboi

name=’address’

abstraction=’character’

model=’loopback’ ’any’

4.7.2 Shutdown

This operation shuts down the given service.

Example

<part name="shutdown_gui" channel="inline" abstraction="operation" model="shutdown">

<property name="service" channel="inline" abstraction="character" model="x_window_system"/>

</part>

Service Property

This is the service to be shut down.

required

name=’service’

abstraction=’character’

model=’signal’ ’shell’ ’standard output’ ’gnu linux console’ ’x window system’

’www’ ’cyboi’

4.7.3 Exit

This operation initiates the shutdown sequence for the application system.

4.8 Communication 59

Example

<part name="exit_system" channel="inline" abstraction="operation" model="exit"/>

4.8 Communication

4.8.1 Send

This operation is able to send a message via textual, graphical or web user interface, or to

the file system or also as shell output directly.

Example

<part name="send_menu" channel="inline" abstraction="operation" model="send">

<property name="channel" channel="inline" abstraction="character" model="gnu_linux_console"/>

<property name="language" channel="inline" abstraction="character" model="tui"/>

<property name="message" channel="inline" abstraction="knowledge" model=".app.tui"/>

<property name="area" channel="inline" abstraction="knowledge" model=".app.tui.menu"/>

<property name="clean" channel="inline" abstraction="boolean" model="true"/>

</part>

Channel Property

The channel via which to send the message.

required

name=’channel’

abstraction=’character’

model=’inline’ ’file’ ’standard output’ ’gnu linux console’ ’x window system’

’http’

Language Property

The language into which to encode the message before sending it.

60 4 Logic Models

required

name=’language’

abstraction=’character’

model=’tui’ ’gui’ ’wui’

Mode Property

The mode of communication.

optional, only if channel is http

name=’mode’

abstraction=’character’

model=’client’ ’server’

Namespace Property

The namespace of the socket.

optional, only if channel is http

name=’namespace’

abstraction=’character’

model=’local’ ’inet’ ’inet6’ ’ns’ ’iso’ ’ccitt’ ’implink’ ’route’

Style Property

The style of communication.

optional, only if channel is http

name=’style’

abstraction=’character’

model=’stream’ ’datagram’ ’raw’

Receiver Property

The name of the system receiving the message.

4.8 Communication 61

required

name=’receiver’

abstraction=’character’

model=name of receiving system

Message Property

The actual message to be sent to another system.

required

name=’message’

abstraction=’knowledge’ ’encapsulated’

model=message knowledge model path

Area Property

The user interface area to be repainted. It is normally just a part of the whole user interface

model. This property helps to speed up repainting while avoiding user interface flickering.

optional

name=’area’

abstraction=’knowledge’ ’encapsulated’

model=knowledge path to part model to be repainted

Clean Property

This property indicates whether or not to clear the screen before painting a user interface.

optional

name=’clean’

abstraction=’boolean’

model=’true’ ’false’

62 4 Logic Models

New Line Property

This property indicates whether or not to add a new line after having printed the message

on screen.

optional

name=’new line’

abstraction=’boolean’

model=’true’ ’false’

4.8.2 Receive

This operation receives data from the given data source.

Example

<part name="receive_patients" channel="inline" abstraction="operation" model="receive">

<property name="channel" channel="inline" abstraction="character" model="file"/>

<property name="language" channel="inline" abstraction="character" model="xdt"/>

<property name="message" channel="inline" abstraction="character" model="import/1.bde"/>

<property name="model" channel="inline" abstraction="knowledge" model=".app.xdt"/>

</part>

Channel Property

The channel via which to receive the message.

required

name=’channel’

abstraction=’character’

model=’inline’ ’file’

Language Property

This is the language (abstraction, type, structure) of the data received.

4.8 Communication 63

required

name=’language’

abstraction=’character’

model= ’boolean’ ’character’ ’wide character’ ’integer’ ’unsigned long’ ’double’

’fraction’ ’complex’ ’date time’ ’yyyy-mm-dd date time’ ’cybol’ ’tui’ ’gui’

’wui’ ’ogg’ ’mp3’ ’jpeg’ ’png’ ’gif’ ’bmp’ ’cybop model diagram’ ’xdt’

’hxp’ ’latex’ ’rtf’ ’sgml’ ’tex’ ’xhtml’ ’mpeg’ ’avi’ ’qt’ ’tar’ ’tgz’

’zip’ ’rar’ ’kwd’ ’odt’ ’sxw’ ’http’ ’https’ ’ftp’

Message Property

This is the source (knowledge template) from where to receive data.

required

name=’message’

abstraction=’character’

model=path to a file

Model Property

This is the compound model to be filled with the data received.

required

name=’model’

abstraction=’character’

model=knowledge model path

Details Property

This is the compound details to be filled with the data received.

required

name=’details’

abstraction=’character’

model=knowledge model path

64 4 Logic Models

Root Property

This property specifies the knowledge model that will serve as the root.

required

name=’root’

abstraction=’knowledge’ ’encapsulated’ model=root model knowledge path

Style Property

This is the style of socket communication.

required

name=’style’

abstraction=’knowledge’ ’encapsulated’ model=’stream’ ’datagram’ ’raw’

Commands Property

This property specifies the knowledge model containing the commands that the user interface

should react to.

optional, only if a user interface thread is to react to certain commands

name=’commands’

abstraction=’knowledge’ ’encapsulated’ model=commands model knowledge path

Blocking Property

This property specifies whether the receive process should be blocking. If it is, then appli-

cation signals will not be processed while the receive operation is waiting for some message

to arrive. Only if a message is actually received, the application will process it in form of a

signal and then continue to wait.

optional

name=’blocking’

abstraction=’boolean’ model=’true’ ’false’

4.9 Shell Commands 65

4.8.3 Interrupt

This operation interrupts a running service. If the given service is not running, the operation

will do nothing.

Example

<part name="interrupt_console" channel="inline" abstraction="operation" model="interrupt">

<property name="service" channel="inline" abstraction="character" model="gnu_linux_console"/>

</part>

Service Property

The service to be interrupted.

required

name=’service’

abstraction=’character’

model=’signal’ ’shell’ ’standard output’ ’gnu linux console’ ’x window system’

’www’ ’cyboi’

4.9 Shell Commands

4.9.1 Archive File

This operation archives the given files or directories. Internally, it just uses the corresponding

shell command functionality.

Example

<part name="archive" channel="inline" abstraction="operation" model="archive_file">

<property name="source" channel="inline" abstraction="character" model="*.dbf"/>

<property name="create" channel="inline" abstraction="boolean" model="true"/>

<property name="update" channel="inline" abstraction="boolean" model="true"/>

<property name="bzip2" channel="inline" abstraction="boolean" model="false"/>

66 4 Logic Models

</part>

Source Property

The path or shell expression pattern determining the directories and files to be compressed

and/ or archived.

required

name=’source’

abstraction=’character’

model=directories and files to be compressed

Create Property

This is the flag specifying whether or not to create the archive file, if it does not exist yet.

required

name=’create’

abstraction=’boolean’

model=’true’ ’false’

Update Property

This property specifies whether or not to update the archive file, if it already exists.

required

name=’update’

abstraction=’boolean’

model=’true’ ’false’

Bzip2 Property

This property specifies whether or not to use bzip2 (bz2) compression instead of the standard

gzip (gz) compression.

4.9 Shell Commands 67

required

name=’bzip2’

abstraction=’boolean’

model=’true’ ’false’

4.9.2 Copy File

This operation copies the given files or directories. Internally, it just uses the corresponding

shell command functionality.

Example

<part name="copy_directory" channel="inline" abstraction="operation" model="copy">

<property name="recursive" channel="inline" abstraction="boolean" model="true"/>

<property name="source" channel="inline" abstraction="character" model="/home/cybop/src"/>

<property name="destination" channel="inline" abstraction="character" model="/home/backup"/>

</part>

Recursive Property

This is the flag specifying whether or not to copy recursively.

required

name=’recursive’

abstraction=’boolean’

model=’true’ ’false’

Source Property

This property specifies the source file or -directory.

required

name=’source’

abstraction=’character’

model=source file or directory

68 4 Logic Models

Destination Property

This property specifies the destination file or -directory.

required

name=’destination’

abstraction=’character’

model=destination file or directory

4.9.3 Execute File

This operation executes the given file.

Example

<part name="execute_cyboi" channel="inline" abstraction="operation" model="execute">

<property name="file" channel="inline" abstraction="character" model="/home/cybop/bin/cyboi"/>

</part>

File Property

This is the file to be executed.

required

name=’file’

abstraction=’character’

model=executable file

4.9.4 List File

This operation lists the file content of the given directory. Internally, it just uses the corre-

sponding shell command functionality.

4.9 Shell Commands 69

Example

<part name="list_contents" channel="inline" abstraction="operation" model="list_file">

<property name="directory" channel="inline" abstraction="character" model="/home/cybop"/>

<property name="all" channel="inline" abstraction="boolean" model="true"/>

<property name="long_listing" channel="inline" abstraction="boolean" model="true"/>

</part>

Directory Property

This is the flag specifying whether or not to list the entire directory contents.

required

name=’all’

abstraction=’boolean’

model=’true’ ’false’

All Property

This is the flag specifying whether or not to list the entire directory contents.

required

name=’all’

abstraction=’boolean’

model=’true’ ’false’

Long Listing Property

This property specifies whether or not to display the contents in form of a long listing, which

also shows access rights etc.

required

name=’long listing’

abstraction=’boolean’

model=’true’ ’false’

5 Examples

The following examples demonstrate how CYBOL’s constructs may be used in practice.

Also, attention is payed to how control structures of classical programming languages may

be implemented in CYBOL. Furthermore, this section discusses how inheritance, containers

and software patterns were considered in the design of CYBOL.

5.1 State Examples

The creation of composed state models is quite straightforward and clear, as the following

CYBOL knowledge templates show.

5.1.1 Model-Part Relation

The DocBook DTD [16] is one of many well-known specifications for structuring documents.

The Linux Documentation Project (TLDP) [10] makes heavy use of it. DocBook is based

on numerous XML tags with defined meaning. The following example shows how parts of a

Text Document can be modelled differently, with at most four tags, using CYBOL:

<model>

<part name="title" channel="inline" abstraction="string" model="Quo Vadis"/>

<part name="author" channel="inline" abstraction="string" model="Henryk Sienkiewicz"/>

<part name="date" channel="inline" abstraction="date" model="1896-01-01"/>

<part name="contents" channel="file" abstraction="cybol" model="contents.cybol"/>

<part name="chapter_$1" channel="file" abstraction="cybol" model="chapter_1.cybol"/>

<part name="chapter_$2" channel="file" abstraction="cybol" model="chapter_2.cybol"/>

<part name="chapter_$3" channel="file" abstraction="cybol" model="chapter_3.cybol"/>

<part name="appendix" channel="file" abstraction="cybol" model="appendix.cybol"/>

</model>

72 5 Examples

5.1.2 Meta Properties

When modelling Graphical User Interfaces (GUI), a speciality to take care about is the

Position of GUI elements within their surrounding container. GUI components may have

very different orderings and positions. The Java Swing framework [3], for example, offers

BorderLayout, BoxLayout, CardLayout, FlowLayout, GridBagLayout etc.

The following example of a GUI Dialogue assumes that an interpreter knows how to handle

Compass layouts, which are the pendant of the above-mentioned BorderLayout :

<model>

<part name="title" channel="inline" abstraction="string" model="Prescription Dialogue"/>

<part name="menu_bar" channel="file" abstraction="cybol" model="menu_bar.cybol">

<property name="position" channel="inline" abstraction="string" model="north"/>

</part>

<part name="tool_bar" channel="file" abstraction="cybol" model="tool_bar.cybol">

<property name="position" channel="inline" abstraction="string" model="west"/>

</part>

<part name="contents_panel" channel="file" abstraction="cybol" model="contents_panel.cybol">

<property name="position" channel="inline" abstraction="string" model="centre"/>

</part>

<part name="status_bar" channel="file" abstraction="cybol" model="status_bar.cybol">

<property name="position" channel="inline" abstraction="string" model="south"/>

</part>

</model>

Further meta information such as the Colour or Size of a GUI component may be given.

The following example shows how a GUI Button may be modelled as part of some GUI

panel. Again, properties like size are not modelled as part, because the button does not

consist of them, in a structural way of thinking:

<model>

<part name="exit_button" channel="file" abstraction="cybol" model="exit_button.cybol">

<property name="position" channel="inline" abstraction="integer" model="0"/>

<property name="size" channel="inline" abstraction="vector" model="80,20,1"/>

<property name="colour" channel="inline" abstraction="rgb" model="127,127,127"/>

<property name="action" channel="inline" abstraction="string" model="exit.cybol"/>

</part>

</model>

5.1 State Examples 73

5.1.3 External Resources

A Text Document like the one shown in the example above often contains graphical illus-

trations called Figures, which it may include from external files. One common graphics

format is Encapsulated PostScript (EPS), for example. Graphical User Interfaces (GUI) as

modelled before do contain Icons; a GUI button may contain a Glyph and so forth. CYBOL

therefore offers ways for linking external resources, given in various formats, as shown in the

following hypothetical knowledge template:

<model>

<part name="pdf_document" channel="file" abstraction="pdf" model="example.pdf"/>

<part name="ogg_audio" channel="file" abstraction="ogg" model="example.ogg"/>

<part name="mpeg_video" channel="file" abstraction="mpeg" model="example.mpeg"/>

<part name="eps_image" channel="file" abstraction="eps" model="example.eps"/>

<part name="jpeg_image" channel="file" abstraction="jpeg" model="host.domain.tld/example.jpeg"/>

</model>

5.1.4 Serialised Model

A possible (but not necessarily recommended) alternative to the linking of external resources

is to store such information (as binary code) inline in the CYBOL knowledge template. One

case in which it is necessary to store all information inline in the model is Serialisation.

A CYBOL address management application that does not rely on the existence of a Database

Management System (DBMS) probably has to store addresses in form of serialised files, such

as the one shown following. It contains two parts representing dynamically extensible lists,

one for phone numbers and another one for addresses:

<model>

<part name="honorific_prefix" channel="inline" abstraction="string" model="Dr."/>

<part name="given_name" channel="inline" abstraction="string" model="Tux"/>

<part name="family_name" channel="inline" abstraction="string" model="Penguin"/>

<part name="phone_numbers" channel="inline" abstraction="cybol" model="(

<part name="home" channel="inline" abstraction="string" model="123"/>

<part name="work" channel="inline" abstraction="string" model="456"/>

<part name="mobile" channel="inline" abstraction="string" model="789"/>

)"/>

<part name="addresses" channel="inline" abstraction="cybol" model="(

...

)"/>

</model>

74 5 Examples

The serialisation of CYBOL models causes one problem: Due to the double hierarchy

to which belong Whole-Part relations (stored in XML attributes) and Meta Information

(stored in XML tags), it is not possible to store CYBOL models in an XML-conform man-

ner. Instead of referencing external files containing the corresponding CYBOL Part models,

a serialised Whole model has to contain these inline.

While XML tags were invented as pairs consisting of a begin and an end tag, XML attribute

values are enclosed by simple quotation marks. Hence, the beginning markup of an attribute

value does not look any different than its ending markup. This is a true problem, because

serialised whole-part hierarchies of CYBOL models, with attribute values containing com-

plete sub models with their own attributes, would get completely mixed up in pure XML

notation.

It was therefore inevitable to break XML-conformity and introduce two additional markup

tokens ”(and)”, indicating the beginning and end of an XML attribute value. The tokens

are extensions of the quotation marks of standard XML attributes, with one left/ right

parenthesis, respectively. That way, the degree to which attributes are nested becomes

countable and it is always clear to which tag an attribute belongs.

5.1.5 Meta Constraints

The example of this section shows a possible Debian GNU/Linux [14] Package definition,

written in CYBOL:

<model>

<part name="name" channel="inline" abstraction="string" model="resmedicinae"/>

<part name="version" channel="inline" abstraction="string" model="0.1.0.0"/>

<part name="section" channel="inline" abstraction="string" model="science"/>

<part name="priority" channel="inline" abstraction="string" model="optional"/>

<part name="architecture" channel="inline" abstraction="string" model="all"/>

<part name="packages" channel="file" abstraction="cybol" model="resmedicinae-packages"/>

<part name="files" channel="file" abstraction="cybol" model="resmedicinae-files"/>

<part name="maintainer" channel="inline" abstraction="string" model="Happy Coder"/>

<part name="description" channel="inline" abstraction="string" model="Medical System"/>

</model>

The part called packages in the example above references an external CYBOL knowledge

template, which is displayed below. It represents a list of packages having different versions

5.2 Logic Examples 75

and varying strengths of dependency. The strength property of the last of these packages has

the model value suggests and, it contains meta information about that property, namely a

constraint. Constraints can be, for example: minima, maxima or a choice of possible values,

as in this case.

<model>

<part name="cyboi" channel="inline" abstraction="string" model="cyboi">

<property name="strength" channel="inline" abstraction="string" model="depends"/>

<property name="version" channel="inline" abstraction="string" model=">= 1.0.0.0"/>

<property name="conflicts" channel="inline" abstraction="string" model="< 1.0.0.0"/>

</part>

<part name="cybol-healthcare" channel="inline" abstraction="string" model="cybol-healthcare">

<property name="strength" channel="inline" abstraction="string" model="depends"/>

<property name="version" channel="inline" abstraction="string" model=">= 0.1.0.0"/>

</part>

<part name="resadmin" channel="inline" abstraction="string" model="resadmin">

<property name="strength" channel="inline" abstraction="string" model="recommends"/>

<property name="version" channel="inline" abstraction="string" model=">= 0.8.0.0"/>

</part>

<part name="resmedicinae-doc" channel="inline" abstraction="string" model="resmedicinae-doc">

<property name="strength" channel="inline" abstraction="string" model="suggests">

<constraint name="choice" channel="inline" abstraction="set" model="suggests,recommends"/>

</property>

<property name="version" channel="inline" abstraction="string" model=">= 0.1.0.0"/>

</part>

</model>

5.2 Logic Examples

The CYBOL implementation of logic models needs more detailed explanation, in particular

the use of special control structures as known from Structured and Procedural Programming

(SPP).

5.2.1 Operation Call

As stated previously, logic models may access and manipulate state models. The simplest

form of a logic model is an operation with associated input/ output (i/o) state models. The

following CYBOL knowledge template calls an add operation, handing over i/o parameters

as properties of the corresponding part :

76 5 Examples

<model>

<part name="addition" channel="inline" abstraction="operation" model="add">

<property name="abstraction" channel="inline" abstraction="character" model="integer"/>

<property name="summand_1" channel="inline" abstraction="integer" model="1"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model=".app.summand"/>

<property name="sum" channel="inline" abstraction="knowledge" model=".app.result"/>

</part>

</model>

The example nicely shows how state models can be given in various formats. The summand 1

is given as constant value, defined directly in the knowledge template. Its type of abstraction

is integer. The summand 2- and sum parameters, on the other hand, are given as dot-

separated references to the runtime tree of knowledge models. Their type of abstraction is

therefore knowledge.

5.2.2 Algorithm Division

Compound logic models like Algorithms, which SPP languages implement using nested

Blocks, can be expressed in CYBOL as well. It does not provide blocks in the classical

sense, but its hierarchical structure allows to subdivide compound knowledge templates,

and to cascade compound logic as well as primitive operations. The following example calls

an addition operation, before a compound algorithm, situated in an external CYBOL file,

gets executed:

<model>

<part name="addition" channel="inline" abstraction="operation" model="add">

<property name="summand_1" channel="inline" abstraction="knowledge" model="domain.number_1"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model="domain.number_2"/>

<property name="sum" channel="inline" abstraction="knowledge" model="domain.number_3"/>

</part>

<part name="algorithm" channel="file" abstraction="cybol" model="logic/algorithm.cybol"/>

</model>

5.2.3 Simple Assignment

CYBOL does not know Variables as used in classical languages. All states a system may take

on are represented by just one Knowledge Tree, which applications may access in a defined

manner (dot-separated knowledge paths). Consequently, Assignments are done differently

5.2 Logic Examples 77

in CYBOL than in classical programming languages. All kinds of state changes go back to

a manipulation of the one knowledge tree:

<model>

<part name="copy_value" channel="inline" abstraction="operation" model="copy">

<property name="source" channel="inline" abstraction="knowledge" model="domain.name"/>

<property name="destination" channel="inline" abstraction="knowledge" model="gui.name"/>

</part>

<part name="move_branch" channel="inline" abstraction="operation" model="move">

<property name="source" channel="inline" abstraction="knowledge" model="address_1.phone"/>

<property name="destination" channel="inline" abstraction="knowledge" model="address_2"/>

</part>

</model>

The first operation in the example above copies a value between two branches of the tree.

Only primitive values can be copied. The second operation removes a whole tree branch

(referenced by the source property) from one parent node, and adds it to another (referenced

by the destination property).

5.2.4 Loop as Operation

Looping is a major technique for the effective processing of whole stacks of data. As many

other control structures, it is simplified to a logic operation, in CYBOL.

The loop operation needs two parameters to be functional: a break flag as means of inter-

ruption and a logic model to be executed in each loop cycle (figure 5.1). An index counting

loop cycles is not given, as it is in the responsibility of the logic model to manage that index,

just like the setting of the break flag, internally. The following example dynamically creates

a table consisting of a number of rows:

<model>

<part name="creat_table_body" channel="inline" abstraction="operation" model="loop">

<property name="break" channel="inline" abstraction="knowledge" model=".domain.flag"/>

<property name="model" channel="inline" abstraction="knowledge" model=".logic.create_rows"/>

</part>

</model>

78 5 Examples

<model>

 <part name="creat_table_body" channel="inline" abstraction="operation" model="loop">

 <property name="break" channel="inline" abstraction="knowledge" model="domain.flag"/>

 <property name="model" channel="inline" abstraction="knowledge" model="logic.create_rows"/>

 </part>

</model>

procedure(int** flag) {

 while (1) {

 if (**flag) {

 break;

 }

 create_rows(flag);

 }

}

break

model

operation

Figure 5.1: Loop Control Structure and Elements in C and CYBOL

5.2.5 Conditional Execution

An obviously presupposed part in the previous example is a logic setting the break condition

(flag). If the break flag was not set, the loop would run endlessly. The following knowledge

template therefore shows a comparison operation, as it could stand at the end of the loop’s

logic model, referenced by the model property in the previous example. After having com-

pared the current loop index with a maximum loop count number, the break flag may or

may not be set. When entering its next cycle, the loop operation checks whether the flag is

set. If so, the loop is stopped:

<model>

<part name="comparison" channel="inline" abstraction="operation" model="compare">

<property name="operator" channel="inline" abstraction="character" model="greater_or_equal"/>

<property name="left_side" channel="inline" abstraction="knowledge" model=".domain.index"/>

<property name="right_side" channel="inline" abstraction="knowledge" model=".domain.count"/>

<property name="result" channel="inline" abstraction="knowledge" model=".domain.flag"/>

</part>

</model>

Flags as one of the earliest techniques used in computing (in software as well as in hard-

ware) are the perfect means for controlling the execution of primitive logic models, namely

operations. They represent a condition set as result of another logic model – the latter often

5.2 Logic Examples 79

procedure(int** index, int** count) {

 if (**index >= **count) {

 true_model();

 } else {

 false_model();

 }

}

procedure(int** index, int** count, int** flag) {

 if (**index >= **count) {

 **flag = 1;

 }

 if (**flag) {

 true_model();

 } else {

 false_model();

 }

}<model>

 <part name="comparison" channel="inline" abstraction="operation" model="compare">

 <property name="operand_1" channel="inline" abstraction="knowledge" model="domain.index"/>

 <property name="operand_2" channel="inline" abstraction="knowledge" model="domain.count"/>

 <property name="operator" channel="inline" abstraction="string" model="greater_or_equal"/>

 <property name="result" channel="inline" abstraction="knowledge" model="domain.flag"/>

 </part>

</model>
<model>

 <part name="if-then-example" channel="inline" abstraction="operation" model="branch">

 <property name="criterion" channel="inline" abstraction="knowledge" model="domain.flag"/>

 <property name="true" channel="inline" abstraction="knowledge" model="domain.true_model"/>

 <property name="false" channel="inline" abstraction="knowledge" model="domain.false_model"/>

 </part>

</model>

Figure 5.2: Condition Control Structure and Elements in C and CYBOL

being some kind of comparison operation. In order to execute code upon activation of a

flag, a conventional comparison control structure needs to be split up into two independent

blocks (figure 5.2), with the flag being the linking element. The flag which was set by a

comparison operation is used for branching the control flow.

The second example shows how a classical if-then statement would be written in CYBOL.

The corresponding operation is called branch and it expects three properties: a criterion flag

and two models, of which one is executed in case the flag is true and the other is executed

otherwise.

<model>

<part name="if-then-example" channel="inline" abstraction="operation" model="branch">

<property name="criterion" channel="inline" abstraction="knowledge" model=".domain.flag"/>

<property name="true" channel="inline" abstraction="knowledge" model=".domain.true_model"/>

<property name="false" channel="inline" abstraction="knowledge" model=".domain.false_model"/>

</part>

</model>

80 5 Examples

5.3 Special Examples

XML is used for representing data of very different domains, and a whole plethora of XML

dialects exists. Two of them are mentioned following. The main purpose of the next exam-

ples, however, is to show how CYBOL can replace these.

5.3.1 Synchronous Execution

MusicXML [11] is a markup language designed to represent musical scores, specifically com-

mon western musical notation from the 17th century onwards. In principle, CYBOL could

be used for this purpose as well. Of course, there are many details (additional properties)

which would still have to be worked out in order to be able to correctly represent complete

musical scores. As most models, the Musical Work displayed in figure 5.3 can be considered

a hierarchy consisting of Parts (played/ sung by instruments/ voices). Parts in turn consist

of Measures, which consist of Notes, which finally have a Pitch and sometimes Lyric.

Figure 5.3: Musical Score of Franz Schubert’s Ave Maria [11]

The following knowledge templates deliver only short examples showing how music may be

modelled in CYBOL. Their property names were taken over from MusicXML’s element tags,

as elaborated in [11]. Most are self-explanatory and shall not be further discussed here. The

5.3 Special Examples 81

first example template represents an extract from a complete musical Work, consisting of

the two parts Voice and Piano:

<model>

<part name="number" channel="inline" abstraction="string" model="D. 839"/>

<part name="title" channel="inline" abstraction="string" model="Ave Maria (Ellen’s Gesang III)"/>

<part name="composer" channel="inline" abstraction="string" model="Franz Schubert"/>

<part name="poet" channel="inline" abstraction="string" model="Walter Scott"/>

<part name="voice" channel="file" abstraction="cybol" model="voice.cybol">

<property name="score_instrument" channel="inline" abstraction="string" model="P1-I14"/>

<property name="instrument_name" channel="inline" abstraction="string" model="Choir Aahs"/>

<property name="midi_instrument" channel="inline" abstraction="string" model="P1-I14"/>

<property name="midi-channel" channel="inline" abstraction="integer" model="1"/>

<property name="midi-program" channel="inline" abstraction="integer" model="53"/>

</part>

<part name="piano" channel="file" abstraction="cybol" model="piano.cybol">

<property ...

</part>

</model>

One of the Parts is shown in the next template. It consists of several measures:

<model>

<part name="measure_$1" channel="file" abstraction="cybol" model="measure_1.cybol">

<property name="divisions" channel="inline" abstraction="integer" model="48"/>

<property name="key_fifths" channel="inline" abstraction="integer" model="-2"/>

<property name="key_mode" channel="inline" abstraction="string" model="major"/>

<property name="beats" channel="inline" abstraction="integer" model="4"/>

<property name="beat_type" channel="inline" abstraction="integer" model="4"/>

<property name="staves" channel="inline" abstraction="integer" model="0"/>

<property name="clef_sign" channel="inline" abstraction="string" model="G"/>

<property name="clef_line" channel="inline" abstraction="integer" model="2"/>

</part>

<part name="measure_$2" channel="file" abstraction="cybol" model="measure_2.cybol">

<property ...

</part>

</model>

A Measure again consists of Notes:

<model>

<part name="note_$1" channel="file" abstraction="cybol" model="note_1.cybol">

<property name="duration" channel="inline" abstraction="integer" model="72"/>

<property name="voice" channel="inline" abstraction="integer" model="1"/>

<property name="type" channel="inline" abstraction="string" model="quarter"/>

82 5 Examples

<property name="stem" channel="inline" abstraction="string" model="down"/>

<property name="position" channel="inline" abstraction="integer" model="1"/>

</part>

<part name="note_$2" channel="file" abstraction="cybol" model="note_2.cybol">

<property name="duration" channel="inline" abstraction="integer" model="12"/>

<property name="voice" channel="inline" abstraction="integer" model="1"/>

<property name="type" channel="inline" abstraction="string" model="16th"/>

<property name="stem" channel="inline" abstraction="string" model="up"/>

<property name="position" channel="inline" abstraction="integer" model="2"/>

</part>

<part name="note_$3" channel="file" abstraction="cybol" model="note_3.cybol">

<property ...

<property name="position" channel="inline" abstraction="integer" model="2"/>

</part>

</model>

An important property to note here is the position value. It is common that two notes have

to be played at the same time, the notes then being called a Chord. In contrast to MusicXML

which provides an own tag to denote notes belonging to the same chord, CYBOL suggests

to use a position property having identical values for all notes in a chord. An interpreter

program may thus not only read necessary sequence information, but can also figure out

which of the notes have to be played synchronously.

A fourth example represents one Note, consisting of a Pitch and Lyric text, which are the

final abstractions in this knowledge template:

<model>

<part name="pitch" channel="inline" abstraction="string" model="B">

<property name="alter" channel="inline" abstraction="integer" model="-1"/>

<property name="octave" channel="inline" abstraction="integer" model="4"/>

</part>

<part name="lyric" channel="inline" abstraction="string" model="A">

<property name="syllabic" channel="inline" abstraction="string" model="begin"/>

</part>

</model>

5.3.2 Presentation and Content

The Mathematical Markup Language (MathML) [4] provides means for representing math-

ematical expressions, that is Content as well as Presentation of data. Both are discrete

5.3 Special Examples 83

models, comparable to the Domain and User Interface (UI) of a software application, which

can be translated into each other.

CYBOL uses just four tags (section 2.3) but can represent mathematical expressions as

well. What MathML calls Content, becomes a Logic knowledge template in CYBOL. The

mathematical content of the formula (a + b)2 would be modelled as follows:

<model>

<part name="addition" channel="inline" abstraction="operation" model="add">

<property name="abstraction" channel="inline" abstraction="character" model="integer"/>

<property name="summand_1" channel="inline" abstraction="knowledge" model=".domain.a"/>

<property name="summand_2" channel="inline" abstraction="knowledge" model=".domain.b"/>

<property name="sum" channel="inline" abstraction="knowledge" model=".domain.c"/>

</part>

<part name="exponentiation" channel="inline" abstraction="operation" model="power">

<property name="base" channel="inline" abstraction="knowledge" model=".domain.c"/>

<property name="power" channel="inline" abstraction="integer" model="2"/>

<property name="result" channel="inline" abstraction="knowledge" model=".domain.r"/>

</part>

</model>

And the formula’s Presentation would be defined by the following two CYBOL State knowl-

edge templates, of which the second one represents the Base that is referenced by the first

one:

<model>

<part name="base" channel="file" abstraction="compound" model="domain/base.cybol">

<property name="fence" channel="inline" abstraction="boolean" model="true"/>

</part>

<part name="power" channel="inline" abstraction="integer" model="2">

<property name="superscript" channel="inline" abstraction="boolean" model="true"/>

</part>

</model>

<model>

<part name="summand_$1" channel="inline" abstraction="character" model="a"/>

<part name="operator" channel="inline" abstraction="character" model="+"/>

<part name="summand_$2" channel="inline" abstraction="character" model="b"/>

</model>

84 5 Examples

5.3.3 Hello World

Two possible CYBOL versions of the famous minimal Hello, World! program are given

following. The first consists of only two operations: send and exit. The string message to

be displayed on screen is handed over as property to the send operation, before the exit

operation shuts down the system:

<model>

<part name="send_model_to_output" channel="inline" abstraction="operation" model="send">

<property name="language" channel="inline" abstraction="character" model="shell"/>

<property name="message" channel="inline" abstraction="character" model="Hello, World!"/>

</part>

<part name="exit_application" channel="inline" abstraction="operation" model="exit"/>

</model>

The second example template is slightly more complex. It starts with creating a domain

model that consists of just one greeting string. That string is then sent as message to the

human user via a Textual User Interface (TUI), just as in the first example. The difference

is that now, the greeting is not handed over as hard-coded string value, but is read from

the runtime knowledge model, which is indicated by its abstraction value:

<model>

<part name="create_greeting" channel="inline" abstraction="operation" model="create">

<property name="name" channel="inline" abstraction="character" model="greeting"/>

<property name="abstraction" channel="inline" abstraction="character" model="character"/>

<property name="element" channel="inline" abstraction="character" model="part"/>

<property name="whole" channel="inline" abstraction="knowledge" model=".app"/>

</part>

<part name="receive_greeting" channel="inline" abstraction="operation" model="receive">

<property name="channel" channel="inline" abstraction="character" model="inline"/>

<property name="language" channel="inline" abstraction="character" model="character"/>

<property name="message" channel="inline" abstraction="character" model="Hello, World!"/>

<property name="model" channel="inline" abstraction="knowledge" model=".app.greeting"/>

</part>

<part name="send_model_to_output" channel="inline" abstraction="operation" model="send">

<property name="language" channel="inline" abstraction="character" model="shell"/>

<property name="message" channel="inline" abstraction="knowledge" model="greeting"/>

</part>

<part name="destroy_greeting" channel="inline" abstraction="operation" model="destroy_part">

<property name="name" channel="inline" abstraction="knowledge" model="greeting"/>

</part>

<part name="exit_application" channel="inline" abstraction="operation" model="exit"/>

</model>

5.4 Inheritance as Property 85

The appearance of a create/ destroy pair in the second example already suggests how an

application lifecycle with startup-, runtime- and shutdown phase could look like in CYBOL.

5.4 Inheritance as Property

One fundamental concept of Object Oriented Programming (OOP) is Inheritance. In prin-

ciple, there is no problem with implementing inheritance in CYBOL. If done, however, it

would differ from traditional class architectures as known from OOP. Classical OOP sys-

tems resolve inheritance relationships at runtime; CYBOP systems, on the other hand,

would resolve them just once when creating a knowledge model (instance) from a knowledge

template. After instantiation, all inheritance relationships are lost since instances are stored

as purely hierarchical whole-part models in memory, without any links to super models.

The following knowledge template shows how inheritance could be realised in CYBOL.

Contrary to OOP classes which hold a link to their corresponding super class as intrinsic

property, a CYBOL knowledge template does not know itself from which super template to

inherit from. That information is stored as extrinsic property outside the template instead,

in other words in the whole template to which the inheriting template belongs.

<model>

<part name="ok_button" channel="file" abstraction="cybol" model="gui/ok_button.cybol">

<property name="super" channel="file" abstraction="cybol" model="button.cybol"/>

<property name="size" channel="inline" abstraction="integer" model="90,30,1"/>

<property name="colour" channel="inline" abstraction="rgb" model="127,127,127"/>

</part>

</model>

One of the properties in the example template above carries the name super. Its model

references another template which is treated as super template of the corresponding part

the property belongs to. With slight modifications on the property name super, which has

to be unique among all properties of a part, it would even be possible to implement Multi-

ple Inheritance. Dependency complications are not to be expected because all inheritance

relationships are forgotten in runtime models.

Although the described inheritance mechanism was tested successfully in an older proto-

type application, it has not been implemented in CYBOL. None of the created example

86 5 Examples

applications showed a need for it, nor did any of them promise more effective programming.

The reuse of CYBOL templates is realised through composition only, that is fine-granular

templates make up more coarse-grained ones. This counts for both, state- as well as logic

models, since they are not bundled like in OOP. And polymorphism as effect does not have

to be considered.

5.5 Container Mapping

State-of-the-art programming languages like Java offer a number of different container types

(figure 5.4).

array

vector

stack

set

list

container

hash table

hash map

collection treemap

Figure 5.4: Classical Container Types in Java

CYBOI owns a Knowledge Schema which represents each item as Hierarchy by default, the

result being that different types of containers are not needed any longer, that is are unified.

Table 5.1 shows how the different kinds of container behaviour are implemented in CYBOL.

As can be seen, CYBOL is able to represent many container types.

5.6 Hidden Patterns 87

Classical Container Type Realisation in CYBOL Knowledge Template

Tree Hierarchical whole-part structure

Table Like a Tree, as hierarchy consisting of rows which consist

of columns

Map Parts have a name (key) and a model (value)

List Parts may have a position property

Vector A model attribute may hold comma-separated values; an

extra template holds a dynamically changeable number of

parts

Array Like a Vector; characters are interpreted as string

Table 5.1: Mapping Classical Containers to CYBOL

5.6 Hidden Patterns

There are a number of software patterns that may not be obvious (hidden) at first sight,

but have been considered in the design of the CYBOL language.

Most obviously, CYBOL knowledge templates follow the Composite pattern, in a simplified

form. All templates represent a compound consisting of part templates, which leads to a

tree-like structure. But this also means that related patterns like Whole-Part and Wrapper

are representable by CYBOL knowledge templates. A template as whole wraps its parts.

Knowledge templates with similar granularity can be collected in one directory, in other

words one common ontological level. Templates with smaller granularity, that is those that

the more coarse-grained templates consist of, can be placed in another common layer and

so forth. What comes out of it is a system of levels – one variant of the Layers pattern.

6 Diagrams

Because of the different programming philosophy behind CYBOP, standard Unified Modeling

Language (UML) diagrams cannot be used unalteredly for the design of CYBOL applica-

tions. Some of them, however, could be quite useful, when adapted a bit. For creating

CYBOL applications, the following four can be considered sufficient. They model the struc-

ture of:

1. Template Diagram (TD): one design-time template (hierarchical, ontological concept),

with purely unidirectional relations; does not illustrate relations between different

concepts, as these are only established by logic models at runtime; could look like

a UML class diagram (CsD) or a tree, only that a template may not only represent

states, but also logic (algorithms, workflows) (figure 6.1)

2. Model Diagram (MD): the runtime model tree; comparable to UML object diagram,

but a simple tree with named nodes would suffice; is important because input/ output

parameters of operations are given as dot-separated paths to runtime knowledge tree

models (figure 6.2)

3. Organisation Diagram (OD): template directories; could look like a UML component-

or package diagram or a simple tree (figure 6.3)

4. Communication Diagram (CD): a network of communicating systems, which may

run on the same or on different physical machines (nodes); could look like a UML

distribution diagram; not to be mixed up with UML collaboration diagram (figure

6.4)

90 6 Diagrams

status_bar

 status_panel

 insert_overwrite_panel

dialog

 title

 menu_bar

 tool_bar

 panel

 status_bar

menu_bar

 file_item

 edit_item

 view_item

 help_item tool_bar

 file_open_icon

 file_save_icon

 cut_icon

 copy_icon

 paste_icon

 zoom_icon

panel

 instruction_label

 tab_pages

 button button

 label

 glyph

Figure 6.1: CYBOL Template Diagram (TD) Proposal

title

menu_bar

panel

tool_bar

status_bar

dialogue

button

file_item

edit_item

...

label

glyph

Figure 6.2: CYBOL Model Diagram (MD) Proposal

6 Diagrams 91

As said above, the four diagrams may look similar to their corresponding UML pendant. One

possible proposal is given for each diagram type. The TD in figure 6.1 illustrates a graphical

dialogue. The diagram looks pretty similar to a UML CsD. Attributes and methods are not

bundled in one concept though, and inheritance does not exist. Associations are drawn if a

concept links to an external concept which may reside in another file (like the menu bar),

for example. If a part (like the title) is hold inline in the concept, on the other hand, an

association is not displayed. Upon clicking on a part in a concept box, a dialogue opens up

that allows the entry of meta data like the part’s channel, abstraction, model and further

properties (details).

The MD in figure 6.2 displays the runtime models that were instantiated with knowledge

templates providing the initial values. Again, the parts of a graphical dialogue were used.

user_interface

tui

gui

wui

domain

clinicaladministrative

logic

Figure 6.3: CYBOL Organisation Diagram (OD) Proposal

The OD in figure 6.3 shows packages into which CYBOL knowledge templates may be organ-

ised. Packages do normally correspond to directories on file system level. The figure contains

a domain package consisting of two sub packages, one containing knowledge templates for

administrative patient data and the other holding templates for clinical data of a patient.

Also, there is a User Interface (UI) package containing three sub packages, for: Textual UI

(TUI), Graphical UI (GUI) and Web UI (WUI). Both, domain- as well as user interface

packages may be accessed from the operations residing in the logic package.

92 6 Diagrams

patient_user

doctor_user

nurse_user ehr_manager

person_identification

image_storage

hospital_system

wui

gui

tui document

image

id

Figure 6.4: CYBOL Communication Diagram (CD) Proposal

The CD in figure 6.4, finally, shows a number of independent systems communicating with

each other. An Electronic Health Record (EHR) manager application may be found in

the center of the figure. Patients communicate with it using a WUI; nurses using a GUI

and doctors using a TUI (for better performance). A patient gets identified by asking a

person identification service. Documents may be exchanged with a hospital system and

images with a special image storage system.

7 Appendices

7.1 Abbreviations

BNF Backus Naur Form

CD Communication Diagram

CsD Class Diagram

CYBOI Cybernetics Oriented Interpreter

CYBOL Cybernetics Oriented Language

CYBOP Cybernetics Oriented Programming

DB Database

DBMS DB Management System

DTD Document Type Definition

EBNF Extended BNF

EHR Electronic Health Record

EPS Encapsulated PS

FDL Free Documentation License

GNU GNU is not UNIX

GPL General Public License

GUI Graphical UI

HTML Hypertext ML

i/o input/ output

MathML Mathematical ML

MD Model Diagram

ML Markup Language

OD Organisation Diagram

OO Object Oriented

94 7 Appendices

(Object Orientation)

OOP OO Programming

OS Operating System

PS PostScript

RAM Random Access Memory

SPP Structured and Procedural Programming

TD Template Diagram

TUI Textual UI

UI User Interface

UML Unified Modeling Language

UNIX Universal Interactive Executive

(Uniplexed Information and Computing System)

VM Virtual Machine

WUI Web UI

XML Extensible ML

XSD XML Schema Definition

7.2 References 95

7.2 References

[1] John Backus, Peter Naur, and et al. Revised report on the algorithmic language algol

60. In Peter Naur, editor, Communications of the ACM, volume 3, no. 5, pages 299–314,

May 1960. http://www.masswerk.at/algol60/report.htm.

[2] Wissenschaftlicher Rat der Dudenredaktion: Guenther Drosdowski ..., editor. Der

Duden: in 12 Baenden; das Standardwerk zur deutschen Sprache, volume Duden,

Rechtschreibung der deutschen Sprache. Dudenverlag, Mannheim; Leipzig; Wien;

Zuerich, 21st edition, 1996. http://www.duden.de/.

[3] James Gosling, Bill Joy, Guy Steele, and et al. The Java Programming Language

Specification; The Java Development Kit (JDK). Sun Microsystems, Inc., Santa Clara,

2nd edition, 1996-2000. http://java.sun.com.

[4] World Wide Web Consortium (W3C) Math Working Group. Mathematical markup

language (mathml) 2.0 recommendation. Online Specification, October 2003.

http://www.w3.org/TR/2003/REC-MathML2-20031021/.

[5] Christian Heller. Cybernetics oriented programming (cybop) in res medicinae. In

OSHCA Conference Online Proceedings, Los Angeles, November 2002. Open Source

Health Care Alliance (OSHCA). http://www.oshca.org/.

[6] Christian Heller. Cybernetics oriented language (cybol). IIIS Proceedings: 8th World

Multiconference on Systemics, Cybernetics and Informatics (SCI 2004), V:178–185,

July 2004. http://www.iiisci.org/sci2004 or http://www.cybop.net.

[7] Christian Heller. Cybernetics Oriented Programming (CYBOP) – An Investigation on

the Applicability of Inter-Disciplinary Concepts to Software System Development. Tux

Tax, Ilmenau, January 2007. http://www.tuxtax.de.

[8] Denis Howe. Free on-line dictionary of computing (foldoc). Internet Database, Septem-

ber 2003. http://wombat.doc.ic.ac.uk/foldoc/Dictionary.gz, http://www.foldoc.org/.

[9] Markus Guenther Kuhn. A summary of the iso ebnf notation. Web Document, Septem-

ber 1998. http://www.cl.cam.ac.uk/ mgk25/iso-ebnf.html.

[10] The linux documentation project. HOWTOs,Guides,FAQs,man pages,Linux

Gazette,LinuxFocus, 2004. http://www.tldp.org/.

[11] Recordare LLC. Musicxml definition 1.0. Online Specification, March 2005.

http://www.musicxml.org.

96 7 Appendices

[12] The Mentor. The hacker manifesto, January 1986.

http://www.phrack.org/archives/7/P07-03.

[13] CYBOP Project. Cybernetics oriented programming (cybop), 2002-2004.

http://www.cybop.net.

[14] Debian Project. Debian gnu/linux, 1997-2004. http://www.debian.org.

[15] Refsnes Data. W3Schools - Full Web Building Tutorials - All Free, 1999-2004.

http://www.w3schools.com/.

[16] Norman Walsh and Leonard Muellner. DocBook: The Definitive Guide. O’REILLY,

http://www.oreilly.com/, v4.3cr3 edition, January 2004. http://docbook.org/.

[17] World Wide Web Consortium (W3C). Extensible Markup Language (XML), 1.0 edition,

February 1998. http://www.w3.org/TR/1998/REC-xml-19980210.

7.3 Figures 97

7.3 Figures

1.1 CYBOL Interpretation . 2

2.1 Recommended CYBOL DTD . 5

2.2 Simplified CYBOL DTD . 5

2.3 Simplified CYBOL XSD . 6

2.4 Recommended CYBOL XSD . 7

2.5 CYBOL in EBNF . 8

3.1 Textual User Interface . 14

3.2 Graphical User Interface . 20

3.3 Web User Interface . 25

5.1 Loop Control Structure and Elements in C and CYBOL 78

5.2 Condition Control Structure and Elements in C and CYBOL 79

5.3 Musical Score of Franz Schubert’s Ave Maria [11] 80

5.4 Classical Container Types in Java . 86

6.1 CYBOL Template Diagram (TD) Proposal . 90

6.2 CYBOL Model Diagram (MD) Proposal . 90

6.3 CYBOL Organisation Diagram (OD) Proposal 91

6.4 CYBOL Communication Diagram (CD) Proposal 92

7.4 Tables 99

7.4 Tables

1.1 Analogy between the Java- and CYBOP World 2

5.1 Mapping Classical Containers to CYBOL . 87

7.5 History 101

7.5 History

TODO

- Rename and reduce standard tags: model, part, property, constraint into just: com-

pound, part, meta

- Rename two of the four standard attributes: name, channel, abstraction, model into:

name, channel, language, message

2.0 (2007-07-31)

- Release CYBOL definition as independent specification document

- Split ”receive” operation: a model has to be created with ”create” first before it can

be handed over to ”receive”, to be filled with data

- Change many properties of state- and logic models

1.0 (2005-12-12)

- Release initial CYBOL definition within the CYBOP book [7]

0.x (2002 to 2004)

- Publicise paper on CYBOL [6]

- Experiment with several XML representation formats

- Introduce first CYBOP ideas to the public [5]

7.6 Licences 103

7.6 Licences

7.6.1 GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991. Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom

to share and change free software–to make sure the software is free for all its users. This

General Public License applies to most of the Free Software Foundation’s software and to

any other program whose authors commit to using it. (Some other Free Software Foundation

software is covered by the GNU Library General Public License instead.) You can apply it

to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it in new free programs;

and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these

rights or to ask you to surrender the rights. These restrictions translate to certain respon-

sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

104 7 Appendices

Also, for each author’s protection and ours, we want to make certain that everyone under-

stands that there is no warranty for this free software. If the software is modified by someone

else and passed on, we want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

effect making the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-

TION

0. This License applies to any program or other work which contains a notice placed by

the copyright holder saying it may be distributed under the terms of this General Public

License. The ”Program”, below, refers to any such program or work, and a ”work based

on the Program” means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it, either verbatim or with

modifications and/or translated into another language. (Hereinafter, translation is included

without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License;

they are outside its scope. The act of running the Program is not restricted, and the output

from the Program is covered only if its contents constitute a work based on the Program

(independent of having been made by running the Program). Whether that is true depends

on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of

the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

7.6 Licences 105

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modifications or work under the

terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge

to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must

cause it, when started running for such interactive use in the most ordinary way, to print

or display an announcement including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this License. (Exception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Program, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the Program, the distribution of the whole must

be on the terms of this License, whose permissions for other licensees extend to the entire

whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program

(or with a work based on the Program) on a volume of a storage or distribution medium

does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided that you

also do one of the following:

106 7 Appendices

a) Accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Sections 1 and 2 above on a medium customarily used for

software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,

for a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if

you received the program in object code or executable form with such an offer, in accord

with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications

to it. For an executable work, complete source code means all the source code for all

modules it contains, plus any associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a special exception, the

source code distributed need not include anything that is normally distributed (in either

source or binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself accompanies

the executable.

If distribution of executable or object code is made by offering access to copy from a des-

ignated place, then offering equivalent access to copy the source code from the same place

counts as distribution of the source code, even though third parties are not compelled to

copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute

the Program is void, and will automatically terminate your rights under this License. How-

ever, parties who have received copies, or rights, from you under this License will not have

their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the Program), you indicate

your acceptance of this License to do so, and all its terms and conditions for copying,

7.6 Licences 107

distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for

any other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they do

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy

simultaneously your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example, if a patent license

would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-

stance, the balance of the section is intended to apply and the section as a whole is intended

to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system, which is implemented by

public license practices. Many people have made generous contributions to the wide range

of software distributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to distribute software

through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of

the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Program

under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of this License.

108 7 Appendices

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of this License which applies to it and ”any later version”, you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-

tion conditions are different, write to the author to ask for permission. For software which

is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of pre-

serving the free status of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-

BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE

QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,

BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-

CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH

7.6 Licences 109

ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and

change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source file to most effectively convey the exclusion of warranty; and each file

should have at least the ”copyright” line and a pointer to where the full notice is found.

One line to give the program’s name and an idea of what it does. Copyright (C) yyyy name

of author

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-

RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;

if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,

MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with AB-

SOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are

welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other

110 7 Appendices

than ‘show w’ and ‘show c’; they could even be mouse- clicks or menu items–whatever suits

your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a ”copyright disclaimer” for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which

makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

linking proprietary applications with the library. If this is what you want to do, use the

GNU Library General Public License instead of this License.

7.6 Licences 111

7.6.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000, 2001, 2002. Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

TERMS AND CONDITIONS

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful

document “free” in the sense of freedom: to assure everyone the effective freedom to copy

and redistribute it, with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way to get credit for their

work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document

must themselves be free in the same sense. It complements the GNU General Public License,

which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free

software needs free documentation: a free program should come with manuals providing the

same freedoms that the software does. But this License is not limited to software manuals; it

can be used for any textual work, regardless of subject matter or whether it is published as a

printed book. We recommend this License principally for works whose purpose is instruction

or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice

placed by the copyright holder saying it can be distributed under the terms of this License.

Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The “Document”, below, refers to any such manual

or work. Any member of the public is a licensee, and is addressed as “you”. You accept

112 7 Appendices

the license if you copy, modify or distribute the work in a way requiring permission under

copyright law.

A “Modified Version” of the Document means any work containing the Document or a

portion of it, either copied verbatim, or with modifications and/or translated into another

language.

A “Secondary Section” is a named appendix or a front-matter section of the Document

that deals exclusively with the relationship of the publishers or authors of the Document

to the Document’s overall subject (or to related matters) and contains nothing that could

fall directly within that overall subject. (Thus, if the Document is in part a textbook of

mathematics, a Secondary Section may not explain any mathematics.) The relationship

could be a matter of historical connection with the subject or with related matters, or of

legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being

those of Invariant Sections, in the notice that says that the Document is released under this

License. If a section does not fit the above definition of Secondary then it is not allowed

to be designated as Invariant. The Document may contain zero Invariant Sections. If the

Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or

Back-Cover Texts, in the notice that says that the Document is released under this License.

A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25

words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a

format whose specification is available to the general public, that is suitable for revising

the document straightforwardly with generic text editors or (for images composed of pixels)

generic paint programs or (for drawings) some widely available drawing editor, and that is

suitable for input to text formatters or for automatic translation to a variety of formats

suitable for input to text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart or discourage subsequent

modification by readers is not Transparent. An image format is not Transparent if used for

any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,

Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,

and standard-conforming simple HTML, PostScript or PDF designed for human modifica-

7.6 Licences 113

tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary word processors,

SGML or XML for which the DTD and/or processing tools are not generally available, and

the machine-generated HTML, PostScript or PDF produced by some word processors for

output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages

as are needed to hold, legibly, the material this License requires to appear in the title page.

For works in formats which do not have any title page as such, “Title Page” means the text

near the most prominent appearance of the work’s title, preceding the beginning of the body

of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either

is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in

another language. (Here XYZ stands for a specific section name mentioned below, such

as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the

Title” of such a section when you modify the Document means that it remains a section

“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this

License applies to the Document. These Warranty Disclaimers are considered to be included

by reference in this License, but only as regards disclaiming warranties: any other implication

that these Warranty Disclaimers may have is void and has no effect on the meaning of this

License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-

mercially, provided that this License, the copyright notices, and the license notice saying

this License applies to the Document are reproduced in all copies, and that you add no

other conditions whatsoever to those of this License. You may not use technical measures to

obstruct or control the reading or further copying of the copies you make or distribute. How-

ever, you may accept compensation in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in section Copying in Quantity.

You may also lend copies, under the same conditions stated above, and you may publicly

display copies.

114 7 Appendices

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of

the Document, numbering more than 100, and the Document’s license notice requires Cover

Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

covers must also clearly and legibly identify you as the publisher of these copies. The front

cover must present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with changes limited to the

covers, as long as they preserve the title of the Document and satisfy these conditions, can

be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the

first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto

adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you

must either include a machine-readable Transparent copy along with each Opaque copy, or

state in or with each Opaque copy a computer-network location from which the general

network-using public has access to download using public-standard network protocols a

complete Transparent copy of the Document, free of added material. If you use the latter

option, you must take reasonably prudent steps, when you begin distribution of Opaque

copies in quantity, to ensure that this Transparent copy will remain thus accessible at the

stated location until at least one year after the last time you distribute an Opaque copy

(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an

updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of

sections Verbatim Copying and Copying In Quantity above, provided that you release the

Modified Version under precisely this License, with the Modified Version filling the role of the

Document, thus licensing distribution and modification of the Modified Version to whoever

possesses a copy of it. In addition, you must do these things in the Modified Version:

7.6 Licences 115

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be

listed in the History section of the Document). You may use the same title as a

previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modifications in the Modified Version, together with at least five

of the principal authors of the Document (all of its principal authors, if it has fewer

than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the

publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form

shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover

Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version as

given on the Title Page. If there is no section Entitled “History” in the Document,

create one stating the title, year, authors, and publisher of the Document as given

on its Title Page, then add an item describing the Modified Version as stated in the

previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the “History”

section. You may omit a network location for a work that was published at least four

years before the Document itself, or if the original publisher of the version it refers to

gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title

of the section, and preserve in the section all the substance and tone of each of the

contributor acknowledgements and/or dedications given therein.

116 7 Appendices

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in

their titles. Section numbers or the equivalent are not considered part of the section

titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in

the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in

title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as

Secondary Sections and contain no material copied from the Document, you may at your

option designate some or all of these sections as invariant. To do this, add their titles to

the list of Invariant Sections in the Modified Version’s license notice. These titles must be

distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-

ments of your Modified Version by various parties–for example, statements of peer review

or that the text has been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.

Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or

through arrangements made by) any one entity. If the Document already includes a cover

text for the same cover, previously added by you or by arrangement made by the same entity

you are acting on behalf of, you may not add another; but you may replace the old one, on

explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to

use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under

the terms defined in section Modifications above for modified versions, provided that you

include in the combination all of the Invariant Sections of all of the original documents,

7.6 Licences 117

unmodified, and list them all as Invariant Sections of your combined work in its license

notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical

Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections

with the same name but different contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the original author or publisher of that

section if known, or else a unique number. Make the same adjustment to the section titles

in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original

documents, forming one section Entitled “History”; likewise combine any sections Entitled

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections

Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under

this License, and replace the individual copies of this License in the various documents with

a single copy that is included in the collection, provided that you follow the rules of this

License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually

under this License, provided you insert a copy of this License into the extracted document,

and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent

documents or works, in or on a volume of a storage or distribution medium, is called an

“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights

of the compilation’s users beyond what the individual works permit. When the Document

is included in an aggregate, this License does not apply to the other works in the aggregate

which are not themselves derivative works of the Document.

If the Cover Text requirement of section Copying In Quantity is applicable to these copies

of the Document, then if the Document is less than one half of the entire aggregate, the

118 7 Appendices

Document’s Cover Texts may be placed on covers that bracket the Document within the

aggregate, or the electronic equivalent of covers if the Document is in electronic form. Oth-

erwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the

Document under the terms of section Modifications. Replacing Invariant Sections with

translations requires special permission from their copyright holders, but you may include

translations of some or all Invariant Sections in addition to the original versions of these

Invariant Sections. You may include a translation of this License, and all the license notices

in the Document, and any Warranty Disclaimers, provided that you also include the original

English version of this License and the original versions of those notices and disclaimers. In

case of a disagreement between the translation and the original version of this License or a

notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,

the requirement (section Modifications) to Preserve its Title (section Applicability and Def-

initions) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-

vided for under this License. Any other attempt to copy, modify, sublicense or distribute the

Document is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-

umentation License from time to time. Such new versions will be similar in spirit to

the present version, but may differ in detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

7.6 Licences 119

Each version of the License is given a distinguishing version number. If the Document

specifies that a particular numbered version of this License “or any later version” applies

to it, you have the option of following the terms and conditions either of that specified

version or of any later version that has been published (not as a draft) by the Free Software

Foundation. If the Document does not specify a version number of this License, you may

choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the

document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify

this document under the terms of the GNU Free Documentation License, Version 1.2 or any

later version published by the Free Software Foundation; with no Invariant Sections, no

Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.”

line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being

LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,

merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing

these examples in parallel under your choice of free software license, such as the GNU General

Public License, to permit their use in free software.

7.7 Index

abstraction Attribute, 4, 9

Add, 47

Algorithm Division Example, 76

Analogy between CYBOP and Java, 2

AND, 37

Archive File, 65

Arithmetic, 47

Attributes, 9

Backus Naur Form, 6

Bit Manipulation, 29

BNF, 6

Boolean Logic, 35

Branch, 40

CD, 89

channel Attribute, 4, 9

Communication, 59

Communication Diagram, 89

Compare, 45

Comparison, 45

Conditional Execution Example, 78

constraint Tag, 4, 10

Containers in CYBOL, 86

Copy, 54

Copy File, 67

Count, 42

Create, 52

CYBOI as Virtual Machine, 2

CYBOL Logic Example Constructs, 75

CYBOL Special Example Constructs, 80

CYBOP, 1

CYBOP-Java Analogy, 2

Debian GNU/Linux Package Definition, 74

Definition, 3

Destroy, 54

Diagrams, 89

Divide, 51

DocBook DTD, 71

Document Type Definition, 4

DTD, 4

EBNF, 4, 6

Encapsulated PostScript, 73

EPS, 73

Examples, 71

Execute File, 68

Exit, 58

Extended Backus Naur Form, 4, 6

Extensible Markup Language, 3, 4, 6, 9

External Resources Example, 73

Get, 44

Get Bit, 34

Grammar, 3

Graphical User Interface, 19, 72

GUI, 72

GUI Layouts, 72

Hello, World

Example, 84

Hidden Patterns in CYBOL, 87

History, 101

HTTP, 73

Hyper Text Transfer Protocol, 73

Inheritance as CYBOL Property, 85

Interrupt, 65

Introduction, 1

122 7 Appendices

Java Swing Framework, 72

Java-CYBOP Analogy, 2

Lifecycle Management, 56

List File, 68

Logic Knowledge Modelling, 9

Logic Models, 29

Loop, 42

Loop as Operation Example, 77

Mapping Containers to CYBOL, 86

Markup Tag, 4

Mathematical Markup Language, 82

MathML, 82

MD, 89

Memory Management, 52

Meta Constraints Example, 74

Meta Data Hierarchy, 3

Meta Property Example, 72

model Attribute, 4, 9

Model Diagram, 89

model Tag, 4, 10

Model-Part Relation Example, 71

Move, 55

Multiply, 50

MusicXML, 80

name Attribute, 4, 9

NEG, 36

NOT, 35

OD, 89

Operation Call Example, 75

OR, 38

Organisation Diagram, 89

part Tag, 4, 10

Patterns in CYBOL, 87

Presentation and Content Example, 82

Program Flow, 40

property Tag, 4, 10

Receive, 62

Reset Bit, 33

Rotate, 30

Semantics, 9

Send, 59

Serialised Model Example, 73

Set Bit, 32

Shell Commands, 65

Shift, 29

Shutdown, 58

Simple Assignment Example, 76

Startup, 56

State Examples, 71

State Knowledge Modelling, 9

State Models, 13

Subtract, 48

Symbols, 4

Synchronous Execution Example, 80

Syntax, 3

Tag-Attribute Swapping, 11

Tags, 10

TD, 89

Template Diagram, 89

Terms, 4

Textual User Interface, 13

The Linux Documentation Project, 71

Theory, 1

TLDP, 71

UML, 89

7.7 Index 123

Unified Modeling Language, 89

User Interface, 13

Vocabulary, 4

Web User Interface, 24

Whole-Part Hierarchy, 3

XML, 3, 4, 6, 9

XML Attribute, 3, 9

XML Schema, 6

XML Schema Definition, 4, 6

XML Tag, 3, 9

XOR, 39

XSD, 4, 6

